国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

分式教學(xué)反思

時間:2022-09-05 15:53:40 教學(xué)反思 我要投稿

分式教學(xué)反思(通用24篇)

  作為一位剛到崗的教師,我們需要很強的教學(xué)能力,對學(xué)到的教學(xué)新方法,我們可以記錄在教學(xué)反思中,教學(xué)反思應(yīng)該怎么寫呢?下面是小編精心整理的分式教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。

分式教學(xué)反思(通用24篇)

  分式教學(xué)反思 篇1

  一是分式的運算錯的較多。

  分式加減法主要是當分子是多項式時,如果不把分子這個整體用括號括上,容易出現(xiàn)符號和結(jié)果的錯誤。所以我們在教學(xué)分式加減法時,應(yīng)教育學(xué)生分子部分不能省略括號。其次,分式概念運算應(yīng)按照先乘方、再乘除,最后進行加減運算的順序進行計算,有括號先做括號里面的。

  二是分式方程也是錯誤重災(zāi)區(qū)。

  (一)是增根定義模糊,對此,我對增根的概念進行深入淺出的闡述,

 、旁龈欠质椒匠痰娜シ帜负蠡傻恼椒匠痰母,但不是原方程的根;

 、圃龈苁棺詈喒帜傅扔0;

 。ǘ┦墙夥质椒匠痰牟襟E不規(guī)范,大多數(shù)同學(xué)缺少“檢驗”這一重要步驟,不能從解整式方程的.模式中跳出來;

  (三)是列分式方程錯誤百出。

  針對上述問題,我從基礎(chǔ)知識和題型入手,用類比的方法講解,與列整式方程一樣,先分析題意,準確找出應(yīng)用題中數(shù)量問題的相等關(guān)系,恰當?shù)卦O(shè)出未知數(shù),列出方程;不同之處是,所列方程是分式方程,最后進行檢驗,既要檢驗是否為所列分式方程的解,又要檢驗是否符合題意。

  《分式》一章在教學(xué)上應(yīng)多用類比的方法,與分數(shù)進行類比教學(xué),使學(xué)生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。

  分式教學(xué)反思 篇2

  “分式運算”教學(xué)中,學(xué)生在課堂上感覺不差,做作業(yè)或測試時卻錯處百出,尤其在分式的混合運算更是出錯多、空白多、究其根源,均屬于運算能力問題,因此在教學(xué)中應(yīng)特別關(guān)注這一深層根源,并根據(jù)學(xué)生的實際情況尋找相應(yīng)對策。

  要較好解決學(xué)生分式運算出錯多、能力差的問題,最見功夫的當屬學(xué)生練習的“強度、深度和針對性”設(shè)計上。因為,分式運算能力形成的基本途徑仍是練習,練得少或者缺乏針對性的練習是學(xué)生分式運算能力差的最大原因,應(yīng)在教學(xué)中做到精講多練,不可以評代練;其次,要堅持過度練習的原則,確保一定的練習量,不只停留在“會做”的層次上,要力求通過練習,使大部分學(xué)生達到“熟練而準確”的.水平;第三,學(xué)生在分式運算中出錯的原因各有不同,因此,練習又必須有顯著的針對性,要從學(xué)生過去的練習中,分析他們出錯的原因,進行個別輔導(dǎo)?傊,要解決初中 中分式運算出錯多的問題,就應(yīng)該:“練習、糾正、再練”。

  分式教學(xué)反思 篇3

  本節(jié)課是在學(xué)生已經(jīng)學(xué)習了整式方程,特別是含有分母的一元一次方程的基礎(chǔ)上,進一步認識分式方程(未知數(shù)在分母中),并探討分式方程的解法。反思本節(jié)課的教學(xué),有以下幾點值得肯定:

  1. 教學(xué)設(shè)計充分尊重學(xué)生,符合新課程理念及“以學(xué)為主,當堂達標”教學(xué)模式要求。本節(jié)課在設(shè)計教學(xué)內(nèi)容及環(huán)節(jié)時,充分考慮到學(xué)生的認知規(guī)律及已有知識經(jīng)驗。采用了“復(fù)習舊知、創(chuàng)設(shè)情境、自主學(xué)習、交流反饋——歸納提升——應(yīng)用練習”的教學(xué)模式進行課堂教學(xué)。首先,設(shè)計了一個含有分母的一元一次方程,使學(xué)生在解決舊知的基礎(chǔ)上,回顧解一元一次方程的基本步驟及去分母的方法。接著給出兩個實際問題引發(fā)學(xué)生思考,通過建立數(shù)學(xué)模型,列出方程使學(xué)生初步感受分式方程與整式方程的區(qū)別,引導(dǎo)學(xué)生自學(xué)教材分式方程的定義。初步認識了分式方程后,鼓勵學(xué)生自主研究解分式方程的方法,在展示反饋的過程中互相交流不同的做法,并體會化歸思想在解方程中的作用。通過檢驗發(fā)現(xiàn)有的分式方程會產(chǎn)生使原分式方程無意義的“根”,從而引發(fā)思考:這是為什么?并組織學(xué)生在小組內(nèi)交流討論,解釋原因并歸納得到解分式方程的基本思想及一般步驟。接下來進行應(yīng)用練習。整節(jié)課的設(shè)計環(huán)節(jié)緊湊,銜接自然,能夠引發(fā)學(xué)生思考,并充分體現(xiàn)了“先學(xué)后教”“以學(xué)定教”的理念。

  2. 課堂教學(xué)中能夠以學(xué)生為主體設(shè)計問題,該放手時就放手,充分尊重學(xué)生,無論是分式定義還是解分式方程的思想方法,甚至是本節(jié)課的難點問題——分式方程產(chǎn)生曾根的原因,都是由學(xué)生通過自主學(xué)習或者是小組交流合作完成,學(xué)生在課堂上思維活躍,積極參與本節(jié)課的教學(xué)活動,是課堂煥發(fā)出勃勃生機。

  3. 課堂教學(xué)中能夠關(guān)注學(xué)困生,為學(xué)困生的`學(xué)習搭建平臺。在學(xué)生進行自主學(xué)習和交流討論時,教師能夠走下講臺,走進學(xué)生中間,主動關(guān)注學(xué)困生,指導(dǎo)他們解決疑難問題或提醒同組成員關(guān)注學(xué)困生的學(xué)習情況。并且,在應(yīng)用新知解決問題環(huán)節(jié),還請每組的5號同學(xué)上黑板展示,當他們遇到困難時,允許同組其他成員上前幫忙,這就為學(xué)困生創(chuàng)設(shè)了展示自我的機會,也使他們體會到成功的喜悅。

  4. 課堂教學(xué)中注重學(xué)生各方面能力的提升及課堂教學(xué)評價的時效性。本節(jié)課前,教師就把評價標準寫在黑板上,教學(xué)過程中引導(dǎo)學(xué)生按照標準對他人的學(xué)習成果進行科學(xué)地點評和評價。這不僅充分調(diào)動學(xué)生學(xué)習的積極性,也引領(lǐng)學(xué)生從不同層面對他人的學(xué)習進行評價,同時也訓(xùn)練學(xué)生語言的嚴謹性、準確性。提高學(xué)生的語言表達能力的同時,也引導(dǎo)學(xué)生學(xué)會傾聽、學(xué)會檢查、學(xué)會評價甚至學(xué)會取長補短。

  當然,“教學(xué)是一門遺憾的藝術(shù)”,再成功的課也有瑕疵,本節(jié)課也不例外。由于本節(jié)課在學(xué)生交流討論、展示反饋過程中充分尊重學(xué)生,在時間上很難把握,致使應(yīng)用練習的時間有些倉促,部分學(xué)生不能按時完成所有習題。另外本節(jié)課學(xué)生參與度雖然比較高,但還有提升的空間。

  總之,本節(jié)課的教學(xué)效果較好,教學(xué)目標達成度較高。證明我對課堂教學(xué)改革的大膽嘗試特別是對“以學(xué)為主,當堂達標”的研究取得了一定的進展,今后我將繼續(xù)努力,積極探索并深入研究更科學(xué)有效地教學(xué)方法和手段,使數(shù)學(xué)課堂精彩不斷。

  分式教學(xué)反思 篇4

  分式初中數(shù)學(xué)中重要的一章,在中考中占有一定的比重。學(xué)生已基本掌握了分式的有關(guān)知識(分式的概念、分式的基本性質(zhì)、約分、通分、分式的運算、分式方程和能化為一元一次方程的分式方程的應(yīng)用題等),并且獲得了學(xué)習代數(shù)知識的常用方法,感受到代數(shù)學(xué)習的實際應(yīng)用價值。

  一、本章可以讓學(xué)生通過觀察、類比、猜想、嘗試等活動學(xué)習分式的運算法則,發(fā)展他們的合情推理能力,所以復(fù)習時重點應(yīng)放在對法則的探索過程上。一定要讓學(xué)生充分活動起來。在觀察、類比、猜想、嘗試當一系列思想活動中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時還要關(guān)注學(xué)生對算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達能力、運算能力和有理的思考問題能力。可是我在知識的傳授上并沒有注重探索、類比法則,而重在對分式四則運算法則的運用和分式方程的運用上,沒有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當?shù)倪x擇教學(xué)方法。今后要避免類似事情的發(fā)生。

  二、復(fù)習中的重建

  分式的運算(加、減、乘、除、乘方和混合運算)是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運算量與題目的難度,重點應(yīng)放在對運算過程推理的理解上,把分式的`基本性質(zhì)做到靈活運用。

  再則,對課本上關(guān)于分式的具體問題一定要重視,并關(guān)注學(xué)生在這些具體活動中的投入程度,看他們能否積極主動地參與,其次看學(xué)生在這些活動中的思維發(fā)展水平—-—能否獨立思考?能否用數(shù)學(xué)語言表達自己的想法?能否反思自己的思維過程?進而發(fā)現(xiàn)新的問題,培養(yǎng)學(xué)生解決問題的能力!提高學(xué)生的學(xué)習興趣!

  分式教學(xué)反思 篇5

  昨天去實驗小學(xué)聽課,課題是《分式的乘除》的第一課時,剛開始秦老師利用類比的數(shù)學(xué)思想,通過復(fù)習分數(shù)的乘除的運算法則推出分式的乘除法則。緊接著秦老師要求組長批改組員的預(yù)習作業(yè),隨后由小組組長匯報檢查的情況,并把計算題出現(xiàn)那些錯誤一一類舉出來。我看看手表已經(jīng)過了15分鐘,隨后秦老師以學(xué)生錯題為例題,講解了兩題分子、分母都是單項式的.乘除運算。當時我在疑惑,一節(jié)課最重要的是前20分鐘,為什么還沒有講解分子、分母是多項式的分式乘除的計算題呢?我覺得計算是學(xué)生的弱項,應(yīng)該教師先做好解題的示范,然后學(xué)習加強練習,只有學(xué)生自己動手計算才會發(fā)現(xiàn)不足。課進行到25分鐘左右,秦老師開始講解分子、分母是多項式的分式乘除。秦老師不是自己單獨講解,而是和學(xué)生互動,一步一步的寫出解題過程,并要求學(xué)生說出依據(jù)。最后秦老師請了四位學(xué)生在黑板上做練習,可能時間上沒有分配好,留有余尾。

  隨后我們進行了評課,聽了秦老師的課題簡述,我才發(fā)現(xiàn)課堂上自己的評課方向是錯誤的,秦老師的課題就是研究學(xué)生預(yù)習出會出現(xiàn)的錯誤以及探討預(yù)習中錯題的類型,最后我覺得秦老師的課還是很優(yōu)秀的,值得我們學(xué)習。

  分式教學(xué)反思 篇6

  一、設(shè)計思路:

  本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是對前一節(jié)內(nèi)容的深化,又為以后的教學(xué)——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。本節(jié)的教學(xué)重點是讓學(xué)生清楚的認識到分式方程也是解決實際問題的工具之一,探索分式方程概念,明確分式方程與整式方程的區(qū)別和聯(lián)系。

  二、教學(xué)知識點:

  在本課的教學(xué)過程中,我認為應(yīng)從這樣的幾個方面入手:

  1、在實際問題中充分理解題意,尋找等量關(guān)系,并依據(jù)等量關(guān)系列出方程。

  2、分式方程和整式方程的區(qū)別:分清楚分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。

  3、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的'教學(xué)。

  三、總體反思

  首先是學(xué)生如何順利的找到題目中的等量關(guān)系,書本給出兩個例子較難,按照書本的引入,一開始課堂就可能處以一種安靜的思維,處于很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習興趣與激情,所以才在學(xué)案中搭梯子降低難度,讓學(xué)生體會到成功的喜悅,這樣學(xué)生才會愿意繼續(xù)探索與學(xué)習;實際問題的難度設(shè)置上是層層深入,問題也是分層次性,能夠讓不同層面的學(xué)生都有不同的體會與感受。

  其次在教學(xué)過程中應(yīng)提高教師自身的隨機應(yīng)變的能力和預(yù)設(shè)問題能力,課前充分備好學(xué)生。例如:以前學(xué)過整式方程,我們以前只是說一次方程之類的,沒有系統(tǒng)的歸類它是整式方程。如果不事先詳細解釋清楚整式方程這個詞時,合作探究二進行的就不會很順利。

  最后,我們應(yīng)讓恰到好處的鼓勵語和評價貫穿于教學(xué)過程中,只有這樣,學(xué)生才能不斷增強自信,在愉悅中探究新知,解決問題。

  總而言之,教無定法,學(xué)無定法。我們應(yīng)在教改的道路上不斷充實自我,完善自我。

  分式教學(xué)反思 篇7

  本節(jié)是學(xué)習了分式的基本性質(zhì)后的內(nèi)容,是分式的基本運算內(nèi)容之一,分式的加減教學(xué)反思。其中,分式加減運算是本節(jié)課的重點,異分母的分式加減是本節(jié)課的難點,而異分母的分式加減運算是本節(jié)課的難點。而異分母的分式加減運算可以轉(zhuǎn)化到同分母的分式加減運算中,因此,掌握好同分母的.分式加減運算是關(guān)鍵,本人從以下幾方面作反思:

 。1)成功之處

  本課從實際問題引入,讓學(xué)生直接感受到實際生活中會碰到分式的加減運算,這就有必要掌握分式加減運算的方法,從而引出本節(jié)內(nèi)容。

  由于分數(shù)與分式有著很多類似的性質(zhì),因而從直觀的分數(shù)加減法運算開始。先探究同分母分式的加減運算的法則,通過類比的思想方法,由數(shù)的運算引出式的運算規(guī)律,體現(xiàn)數(shù)學(xué)知識由具體到抽象,從特殊到一般的內(nèi)在聯(lián)系,符合學(xué)生的認知規(guī)律,并在得出結(jié)論的過程中,與學(xué)生一起探討,注重學(xué)生的參與,學(xué)生很快融入了課堂,調(diào)動了學(xué)生學(xué)習的積極性。而后,同樣利用類比方法,安排了異分母分式加減運算的學(xué)習,這樣由簡到繁,由易到難,符合學(xué)生認知的發(fā)展規(guī)律,有助于知識的層層落實與掌握,而且通過通分將異分母的分式加減轉(zhuǎn)化為同分母的分式加減運算上,注重知識間的聯(lián)系,體現(xiàn)了數(shù)學(xué)中轉(zhuǎn)化的思想方法,課堂上氣氛活躍,學(xué)生們積極參與,從課堂學(xué)生做習題的情況來看,知識掌握比較好,知識已落實到位。

  (2)不足之處

  本課出現(xiàn)了有頭無尾的情況,前后呼應(yīng)還沒做到位,沒有解決引例中“”如何計算這個問題,這是本節(jié)課的一個最大的遺憾。課堂教學(xué)真的是“一門缺憾的藝術(shù)”正是有著這樣或那樣的缺憾,才使我們更有動力的在探索地道路上大步前行。

  一節(jié)數(shù)學(xué)課,經(jīng)過反思,會發(fā)現(xiàn)許多值得推敲的地方,會發(fā)覺好多細節(jié)的地方需要精心設(shè)計,在反思中,能提升自己的認識,為以后的教學(xué)積累寶貴的經(jīng)驗,讓自己更貼近學(xué)生。

  分式教學(xué)反思 篇8

  分式一章的第一課時教學(xué),利用引例列出的代數(shù)式進行歸納比較,得出分式的概念,抓住分式概念最本質(zhì)的特征“分母含有字母”,從而研究:分式有意義無意義的條件、分式的值為零的條件、分式的值為正數(shù)負數(shù)整數(shù)等條件,解決各種數(shù)學(xué)問題。

  在解決分式的值為零,分子為零且分母不為零的題型時,有考慮字母的值的取舍的題目,采用學(xué)生在黑板上的說理方法比我原來的方法更有效,學(xué)生的方法是:由分子x2-4=0求得x=2及x=-2,再分別將求得的字母的值代入分母進行計算,使分母為零的.情況舍去,使分母不為零的保留,進行這樣的取舍檢驗,對于分母不是一次多項式的情況就能順利地區(qū)分出來,學(xué)生使用的這個方法好。

  在轉(zhuǎn)化求解時,發(fā)現(xiàn)學(xué)生對一元一次不等式組的解題還是比較生疏的,為了使學(xué)生全面提高學(xué)習效果,在遇有類似情況時還是復(fù)習一下更有效果。學(xué)習的主體是學(xué)生,不是課堂的花架子。

  對于-a2-1一定為負數(shù),也同樣要師生協(xié)作,生生協(xié)作討論研究,確保全體學(xué)生理解和靈活應(yīng)用。

  對于題目:整數(shù)x取何值時,分式4/x-1的值為整數(shù),學(xué)生的理解和解題也是一個難點。

  由于學(xué)生沒有課本,我們的課堂學(xué)案應(yīng)設(shè)計的更具實用性,課堂知識內(nèi)容的表達要更加便于學(xué)生理解和接受。

  分式教學(xué)反思 篇9

  本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習的基礎(chǔ)上進上步加深對知識的掌握。這種學(xué)習模式符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時需要花費很長時間,學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過學(xué)生的課前的預(yù)習,節(jié)約的課堂上的時間。

  教學(xué)上應(yīng)多用類比的方法,與分數(shù)進行類比教學(xué),使學(xué)生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當復(fù)習一元一次方程的解法。

  解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的`思想,同時要適當復(fù)習一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。

  要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。

  在教學(xué)過程中,由于種種原因,存在著不少的不足。

  1、回顧引入部分題目有點多,應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認知規(guī)律。

  2、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。

  3、時間掌握不太好。學(xué)生預(yù)習還不夠充分,導(dǎo)致突發(fā)事件過多,以致總結(jié)過于匆忙。

  分式教學(xué)反思 篇10

  下面是我在教學(xué)中的幾點體會:

  一、教學(xué)中的發(fā)現(xiàn)

 。1)分式的運算錯的較多。分式加減法主要是當分子是多次式時,如果不把分子這個整體用括號括上,容易出現(xiàn)符號和結(jié)果的錯誤。所以我們在教學(xué)分式加減法時,應(yīng)教育學(xué)生分子部分不能省略括號。其次,分式概念運算應(yīng)按照先乘方、再乘除,最后進行加減運算的順序進行計算,有括號先做括號里面的。

 。2)分式方程也是錯誤重災(zāi)區(qū)。

  一是增根定義模糊,對此,我對增根的概念進行深入淺出的闡述:

  1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;

  2.增根能使最簡公分母等于0;

  二是解分式方程的步驟不規(guī)范,大多數(shù)同學(xué)缺少“檢驗”這一重要步驟,不能從解整式方程的模式中跳出來;

 。3)列分式方程錯誤百出。

  針對上述問題,我在課堂復(fù)習中從基礎(chǔ)知識和題型入手,用類比的方法講解,特別強調(diào)列分式方程解應(yīng)用題與列整式方程一樣,先分析題意,準確找出應(yīng)用題中數(shù)量問題的相等關(guān)系,恰當?shù)卦O(shè)出未知數(shù),列出方程;不同之處是,所列方程是分式方程,最后進行檢驗,既要檢驗是否為所列分式方程的解,又要檢驗是否符合題意。

  二、教學(xué)后的反思

  通過這節(jié)課的教學(xué)及課后幾位專家的.點評,這節(jié)課的教學(xué)目的基本達到,不足之處本節(jié)課的容量較大,如果能采用多媒體教學(xué)效果會更好;在以后的教學(xué)中我將繼續(xù)努力,提高自己的教學(xué)水平。

  分式教學(xué)反思 篇11

  解分式方程的思想是將分式方程轉(zhuǎn)化為整式方程,驗根是解分式方程必不可少的步驟。分式方程又是解決實際問題的工具之一。

  教學(xué)設(shè)計中蘊涵的數(shù)學(xué)思想和數(shù)學(xué)方法:《分式》一章在教學(xué)上應(yīng)多用類比的方法,與分數(shù)進行類比教學(xué),使學(xué)生明確分式與分數(shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當復(fù)習一元一次方程的'解法。

  教學(xué)目標:

  1.了解分式方程的概念,和產(chǎn)生增根的原因。

  2.掌握分式方程的解法,會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。

  重點、難點

  1.重點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。

  2.難點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。

  3.認知難點與突破方法

  解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當復(fù)習一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。

  要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。

  分式教學(xué)反思 篇12

  1、在復(fù)習中引入新的教學(xué)重點,回顧以往所學(xué)習的方程知識,采用讓學(xué)生自己說出幾個一元一次方程并求解的方法,充分發(fā)揮了學(xué)生的主動性,活躍了課堂氣氛。為本節(jié)課開了一個好頭。

  2、利用學(xué)生的一個求不出解的.一元一次方程(x-1)/3+1=(2x-3)/6,借機讓學(xué)生明確可化為ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的讓學(xué)生為后面的學(xué)習做好了鋪墊。也吸引了學(xué)生的注意力,讓學(xué)生覺得有趣而一步一步的聽下去。

  3、通過設(shè)問,活動,讓學(xué)生親自感知,體驗,在感知和體驗中進行質(zhì)疑、思考與探究,通過質(zhì)疑、思考與探索發(fā)現(xiàn)新知,激發(fā)了學(xué)生的參與熱情,培養(yǎng)了學(xué)生的探索意識,使學(xué)生在喜悅的氣氛下自主的學(xué)習。

  通過本節(jié)課,也使我領(lǐng)悟到,在今后的教學(xué)中,應(yīng)做到以下幾點:

  1、變枯燥為有趣同,讓學(xué)生成為整個教學(xué)的重點。

  興趣是最好的老師,只有充分調(diào)動學(xué)生的學(xué)習熱情,才能使學(xué)生真正參與學(xué)習中來,才能主動地去學(xué)習。當然,這需要老師多下功夫,多聯(lián)系實際,多設(shè)計情景,讓學(xué)生覺得不是在上課,而是在演電視劇,而他就是其中的主人公。

  2、變復(fù)雜為簡單。

  越簡單學(xué)生就越想學(xué),越會做學(xué)生就越想做,簡單之中蘊含著大道理,簡單的做多了,熟練了,才可能去做復(fù)雜的。當然這需要形式多樣,而不能單一。

  3、給學(xué)生足夠的思考空間,不要急于給出答案,就是學(xué)生說錯了,也不要把學(xué)生硬拉過來,而應(yīng)該給學(xué)生留下思考的空間。

  分式教學(xué)反思 篇13

  通過復(fù)習同分母異分母分數(shù)的加減計算類比學(xué)習分式的加減運算以分式的通分(分母為異分母的情況)作為預(yù)備知識檢測,再到學(xué)生自主學(xué)習所完成的基礎(chǔ)練習題及熟練法則,通過讓學(xué)生板演計算過程后出現(xiàn)的問題(分子的加減,去括號問題及分式的最簡化等)給予講解及問題的討論。最后是課堂練習鞏固和小結(jié)作業(yè)布置。

  在授課結(jié)束后發(fā)現(xiàn)學(xué)生對于同分母的分式的加減運算掌握得比較好但是對于異分母的分式加減就掌握得不是很理想,很多學(xué)生對于分式的通分還很不熟練,也有學(xué)生對于計算結(jié)果應(yīng)該為最簡分式理解不夠總是無法化到最簡的形式。

  分式的加減法上完后列舉了一道加減混合運算題,在講解時結(jié)合加減混合運算法則進行復(fù)習,分式的`加減混合運算不同的是分母或者分子當中如果有出現(xiàn)可以因式分解的應(yīng)該先進行因式分解,異分母的分式應(yīng)先進行通分化為同分母再進行計算,除法應(yīng)轉(zhuǎn)化為乘法。并且計算的最終結(jié)果應(yīng)該為最簡分式的形式,在計算時應(yīng)先觀察分式的特點從而分析是不是可以結(jié)合乘法的分配律進行計算從而達到化繁為簡的目的。

  分式教學(xué)反思 篇14

  一、要創(chuàng)造性地使用教材

  教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實際情況進行調(diào)整。本節(jié)教材中的引例分式方程較復(fù)雜,學(xué)生直接探索它的`解法有些困難。我是從簡單的整式方程引出分式方程后,再引導(dǎo)學(xué)生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質(zhì)去分母,轉(zhuǎn)化為整式方程再求解。因此,學(xué)生學(xué)的效果也較好。

  二、相信學(xué)生并為學(xué)生提供充分展示自己的機會

  學(xué)生已經(jīng)學(xué)習了一元一次去探究分式方程的解法及分式方程檢驗的必要性。

  三、注意改進的地方

  講例題時,先講一個產(chǎn)生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強調(diào)解分式方程必須檢驗,不能省略不寫這一步。

  分式教學(xué)反思 篇15

  分式是有理式的一個重要組成部分。在整式的概念、變形、四則運算及因式分解的基礎(chǔ)上,進一步學(xué)習分式,它既是對整式的運用和鞏固,也是對整式的延伸。分式的學(xué)習則需要類比分數(shù)的概念性質(zhì)、運算法則等知識來完成。

  在這一章的教學(xué)中,我首先從實際問題出發(fā),類比分數(shù),引出分式的概念;其次類比分數(shù)的基本性質(zhì)和四則運算,學(xué)習相應(yīng)分式的基本性質(zhì)和四則運算;再次學(xué)習可化為一元一次方程的分式方程的求解;最后引入整數(shù)指數(shù)冪,把分式與負整數(shù)指數(shù)冪的互化有機地聯(lián)系起來,同時又把科學(xué)記數(shù)法推廣到絕對值小于1的數(shù)的表示。

  結(jié)合學(xué)生的學(xué)習反饋,我認為在教學(xué)中應(yīng)注意以下幾個問題:

  1.類比分數(shù)的概念性質(zhì),如分母不為零、零除以任何不為零的數(shù)都得零、一個數(shù)除以它本身都得1(零除外)、分子分母同號為正、異號為負等,可以幫助學(xué)生正確理解當分式中字母取何值時,分式有意義、分式無意義、分式值為零、分式值為1、分式值為正、分式值為負。

  2.在進行分式的運算時,要強調(diào)運算順序,要讓學(xué)生體會到在運算的過程中,凡遇多項式要先因式分解再約分或通分,最后結(jié)果必須化為最簡分式或整式。

  3.在將分式方程化為整式方程求解的`過程中,要滲透“轉(zhuǎn)化思想”,要讓學(xué)生知道可能產(chǎn)生增根,從而使學(xué)生認識到檢驗的目的和必要性。

  4.學(xué)生容易出現(xiàn)提取負號后,括號里面各項不全變號的錯誤;容易將分式方程去分母的方法挪用到分式計算中去,出現(xiàn)隨意去分母的錯誤等。

  總的來說,聯(lián)系舊知,對比新知,及時發(fā)現(xiàn)和糾正學(xué)生的錯誤,可以使分式的學(xué)習順利進行。

  分式教學(xué)反思 篇16

  本節(jié)設(shè)計的思路是,從幾個實際問題入手,讓學(xué)生列出一些代數(shù)式,從中發(fā)現(xiàn)一種不同于整式但又類似于分數(shù)的一類代數(shù)式。通過獨立思考、小組討論歸納出共同特點從而形成分式概念。接著通過練習辨析概念,讓學(xué)生明白整式與分式的聯(lián)系和不同,注意其中常見易混淆之處。接著處理分式有(無)意義、分式值為零的情況,突破方式是練習、糾錯、總結(jié)。

  不足之處:

  第一是學(xué)生討論環(huán)節(jié)并不是很有效,在引導(dǎo)學(xué)生形成概念時語言不夠精準,表達不夠明確,導(dǎo)致時間有所耽誤。

  第二是沒有讓學(xué)生板演,展示。個別提問的`少,集體回答的多,難免有混過去的學(xué)生。

  第三是分式值為零的條件講解時有些生硬,這一部分還是要讓學(xué)生理解,才能在解決問題時不與分式有意思無意義的條件混淆。

  這在遇到檢測第6題時有明顯的感覺,學(xué)生并不能很好的接受這個分式總是有意義,這是下一節(jié)課需要補充的。

  分式教學(xué)反思 篇17

  本課從實際問題引入,讓學(xué)生感受到實際生活中會碰到分式加減法運算,這就有必要掌握分式加減運算的方法,從而引出本節(jié)內(nèi)容。

  由于分數(shù)與分式有著很多類似的性質(zhì),因而從直觀的分數(shù)加減法運算開始。先探究同分母分式的.加減運算法則,通過類比的思想方法,有數(shù)的運算引出式的運算規(guī)律,體現(xiàn)數(shù)學(xué)知識由具體到抽象、從特殊到一般的內(nèi)在聯(lián)系,符合學(xué)生的認知規(guī)律,并在得出結(jié)論的過程中,與學(xué)生一起探討,注重學(xué)生的參與,學(xué)生很快融入了課堂,調(diào)動了學(xué)生的學(xué)習積極性。而后,同樣利用類比的方法,安排了異分母分式加減運算的學(xué)習,這樣由簡到繁,由易到難,符合學(xué)生認知的發(fā)展規(guī)律,有助于知識的層層落實與掌握,并且通過通分將異分母分式加減化為同分母分式加減的運算,注重知識間的聯(lián)系,體現(xiàn)了數(shù)學(xué)中轉(zhuǎn)化的思想方法,課堂上氣氛活躍,學(xué)生們積極參與,從課堂學(xué)生做習題的情況來看,知識握比較好,知識已落實到位。

  分式教學(xué)反思 篇18

  通分一課的教學(xué)目標是讓學(xué)生理解通分的意義和掌握通分的方法。它是分式基本性質(zhì)的一種應(yīng)用,是在學(xué)生已經(jīng)掌握了分式的基本性質(zhì)和約分的基礎(chǔ)上進行教學(xué)的,它為后面學(xué)習異分母分式加減法的奠定基礎(chǔ)。通分的方法其實不難,關(guān)鍵是讓學(xué)生理解為什么要通分和通分的方法,所以,在教學(xué)中,我引導(dǎo)學(xué)生利用分式基本性質(zhì)把分母變成相同而大小不變的方法就是通分這一概念。出示三道練習題,指導(dǎo)學(xué)生鞏固運用通分的方法。本節(jié)課,我能夠以一個組織者、引導(dǎo)者和參與者的身份進行教學(xué)活動,注重調(diào)動學(xué)生的'學(xué)習興趣,創(chuàng)設(shè)了良好的探究交流的平臺。不把自己的意愿強加給學(xué)生。給學(xué)生多練,領(lǐng)悟通分的意義及方法,使本節(jié)課收到預(yù)期效果。

  所以,如果我們在數(shù)學(xué)課堂教學(xué)中經(jīng)常注視培養(yǎng)學(xué)生的思維能力,當學(xué)生的思維受阻時,教師適時點撥,當學(xué)生的思維遇卡時,教師巧妙催化,這樣會使學(xué)生在題中數(shù)量間自由地順逆回環(huán),導(dǎo)致學(xué)生發(fā)散思維能力的形成,以有利于培養(yǎng)學(xué)生的創(chuàng)新思維。

  分式教學(xué)反思 篇19

  成功:

  1、本節(jié)課初步達到了教學(xué)目標,突出了重點,層層推進,突破難點,然后放手讓學(xué)生去猜想同分母分式的加減法法則,嘗試著去解決問題,從對同分母分數(shù)加減法法則類比出同分母分式的加減法法則,同時引導(dǎo)了學(xué)生把一個實際問題數(shù)學(xué)化;低起點,順應(yīng)著學(xué)生的認知過程,設(shè)置了隨堂練習,在用法則的重點環(huán)節(jié)上,無論是例題的分析還是練習題的落實,都以學(xué)生為中心,給足充分的時間讓學(xué)生去計算,去暴露問題,也為后一步的教學(xué)提供了較好的對比分析的材料,讓他們留下深刻的印象。

  2、是以討論的形式呈現(xiàn)給學(xué)生例題1,讓學(xué)生去感受體驗,學(xué)生興趣高漲。每一個層次的練習完成之后讓學(xué)生去總結(jié)一下在解題過程中的收獲,在此基礎(chǔ)上引導(dǎo)學(xué)生發(fā)現(xiàn)解題技巧,把學(xué)生的認知提升了一個高的層面上,達到了用法則而不拘泥于法則,通過分析題目的顯著特點,來靈活運用方法技巧解決問題。同時把時間和空間留給學(xué)生,讓他們多一些練習,多一些鞏固。

  3、是體會到一節(jié)課的科學(xué)設(shè)計不僅對一節(jié)課的成敗取著決定作用,更重要的.是對學(xué)生數(shù)學(xué)思想的建立和數(shù)學(xué)方法的掌握欲為重要,科學(xué)的設(shè)計,有利于充分的挖掘?qū)W生的數(shù)學(xué)潛能,突破難點,事半而功倍,有利于數(shù)學(xué)學(xué)習的深化。

  不足:

 。1)學(xué)生對于同分母的分式的加減運算掌握得比較好,但是對于異分母的分式加減就掌握得不是很理想,很多學(xué)生對于分式的通分還很不熟練,也有學(xué)生對于計算結(jié)果應(yīng)該為最簡分式理解不夠總是無法化到最簡的形式。

 。2)分式的加減法上完后列舉了一道加減混合運算題,在講解時結(jié)合加減混合運算法則進行復(fù)習,分式的加減混合運算不同的是分母或者分子當中如果有出現(xiàn)可以因式分解的應(yīng)該先進行因式分解,異分母的分式應(yīng)先進行通分化為同分母再進行計算,在計算時應(yīng)先觀察分式的特點,達到化繁為簡的目的。

  分式教學(xué)反思 篇20

  分式這章的內(nèi)容在初中教學(xué)的過程中,屬于中難度的知識。首先學(xué)生在理解它的定義上就有難度。類比整式,概念上就難以建模。分式有意義無意義,分式值為0、不為0,分式值為正或負的概念出現(xiàn),又給學(xué)生學(xué)習的過程中設(shè)置了難度。在第二大塊的分式運算中又是多塊知識點的綜合和應(yīng)用。要理解分式性質(zhì)對通分和約分的理論支持作用,同時還要能準確的計算最簡公分母、公因式,能準確進行整式的加減和乘除運算,還要能夠準確進行因式分解的計算。所以這部分內(nèi)容實際上對學(xué)生的理解、建模、遷移及計算能力有很高的要求。很多同學(xué)是越學(xué)越糊涂,學(xué)完后都不知所以然甚至什么都不會。更不要說加上后面的分式方程。兩部內(nèi)容完全理不清。分不清誰是誰,到底該怎么算。分式的加減、乘除及混合運算更是錯誤百出,感覺分不清計算的思路和方法。因此在復(fù)習中重點解決的就是這些概念、定義及運算中的易錯點和難點。針對復(fù)習過程中出現(xiàn)的.問題,我總結(jié)了以下幾條:

  一、概念混淆不清,計算過程錯誤百出

  分式運算的錯誤常見的類型有對分式性質(zhì)不理解、對運算律的不掌握、對運算法則的不熟練。而運算的準確性是學(xué)生計算的基本要求,很多學(xué)生產(chǎn)生錯誤了不以為然,認為是粗心或者馬虎的原因。實則不是,這是因為他們對基本的定義和概念理解不透徹,對基本公式、法則掌握不熟練造成的。要解決這些問題,必須重視相應(yīng)知識點的理解和訓(xùn)練,把分式運算中的知識點逐一分析,專項練習鞏固,重點突破,多聯(lián)系和測驗,及時檢查糾正。不讓問題堆積,查漏補缺,對普遍性錯誤重點講解,以便引起學(xué)生足夠的重視。

  二、畏懼心理和畏難情緒

  分式運算字母多、式子長、綜合要求高,不少學(xué)生一看到分式運算尤其是混合運算就頭大,信心不足,甚至產(chǎn)生畏難心理,一算就錯,一講就懂,在算還是錯誤層出。面對這種問題,應(yīng)著眼于以下幾點:

 。ㄒ唬┛偨Y(jié)分式運算中各種容易出現(xiàn)的錯誤問題,力爭逐一練習和得以解決。加減乘除一項一項的練習,在進行混合運算。

 。ǘI造輕松愉快的學(xué)習氛圍,分層次進行練習,由易到難,由簡到繁的設(shè)置題目,讓各層次的的學(xué)生都能有所收獲,增強自信心,減輕心理負擔。

 。ㄈ┙虝䦟W(xué)生計算的方法、明白運算順序和運算的技巧,拆項訓(xùn)練和遞進訓(xùn)練同時進行。幫助學(xué)生分析出錯的原因并加以輔導(dǎo),爭取優(yōu)生更優(yōu),差生提升,全員掌握。

  三、審題不清,分析不到位

  很多學(xué)生在分式運算的過程中出錯,主要是因為不重視審題,題目還沒看完就動筆,不研究題目的結(jié)構(gòu)及運算順序。隨意通分約分,不看題目結(jié)構(gòu)特征、不遵循運算順序。要教會學(xué)生在審題時注意以下幾點:

  (一)題目有哪些運算;

 。ǘ┻\算之間的先后順序;

 。ㄈ┦阶又杏袩o應(yīng)先整理的式子,如先分解因式的,小數(shù)系數(shù)的式子;

 。ㄋ模┦欠裼泻啽惴椒,哪些地方容易出錯或忽視

  四、培養(yǎng)總結(jié)歸納經(jīng)典題目的能力

  優(yōu)化解題,激發(fā)學(xué)習興趣,簡便運算。典型例題舉一反三,多觀察多思考多總結(jié)。不是停留在會做,而是達到熟練準確的程度?傊ㄟ^分析問題,解決問題,反復(fù)的練習糾錯總結(jié)再練習的方式,解決分式運算的問題。

  分式教學(xué)反思 篇21

  《分式》教學(xué)中,通過對教材的研讀與操作,我覺得,教學(xué)應(yīng)當根據(jù)學(xué)情對教材靈活應(yīng)用,不必拘泥于教材,按部就班,甚至死板硬套,造成學(xué)生理解、應(yīng)用的困難。

 。ㄒ唬┻m度添加“移號法則”。利用對比的方法認識了分式的基本性質(zhì)以后,課本的編排是約分、通分,可在相關(guān)的例題訓(xùn)練中都不同程度的涉及到了“移號”的問題,而“移號法則”在新教材中有刪略,僅僅體現(xiàn)在習題P9 第5題“不改變分式的值,使分式的分子、分母中都不含”-”號”,顯然,教材的編寫者試圖淡化這一重要變形,僅僅從有理數(shù)的除法則方面再次加以提醒,這其實是遠遠不夠的;诖耍以谝龑(dǎo)學(xué)生完成粉飾的基本性質(zhì)以后,對本題進行了深入探究:通過本題,你發(fā)現(xiàn)了什么?----通過提煉總結(jié),得出了“分式、分式的分子、分式的分母中,改變其中兩項的符號,分式的值不變(移號法則)”的結(jié)論。這樣,通過鋪墊,學(xué)生在完成P6 例3(1)、P11 例1(2)、例2(2)等問題時,困難就迎刃而解了。

 。ǘ⿲φ麛(shù)指數(shù)冪點的處理。當前,教材傾向于“數(shù)學(xué)從實踐中來”的理念的踐行,很多知識點要從實際問題中反映出來,然后加以研討,而就整數(shù)指數(shù)冪而言,似乎完全不必:數(shù)學(xué)是一門有嚴密的邏輯體系的學(xué)科,從原有的“正整數(shù)指數(shù)冪”的基礎(chǔ)上構(gòu)建,其實更符合數(shù)學(xué)科的.特點。因此,在具體的教學(xué)中不妨引導(dǎo)學(xué)生從數(shù)的發(fā)展史方面進行類比教學(xué),使學(xué)生的知識體系有一個漸進的完善過程,更有利于其對整個體系的構(gòu)建。

 。ㄈ⿲α蟹质椒匠探鈶(yīng)用題方面,是本章的教學(xué)難點,也是學(xué)生(何止是學(xué)生?)頗感頭疼的部分。解決這個問題的關(guān)鍵是正確審題。學(xué)生依據(jù)已有的生活、知識經(jīng)驗對問題進行解讀,提取、整合相關(guān)信息,找出相等關(guān)系(等量關(guān)系),抓住這個突破口,列方程也就順理成章了,故而在這一部分的教學(xué)中,應(yīng)當充分讓學(xué)生身體,準確理解題意,這才是關(guān)鍵環(huán)節(jié),教材的設(shè)計順應(yīng)了學(xué)生的常規(guī)思路,可讓學(xué)生在預(yù)習時充分利用,課堂教學(xué)時應(yīng)著力找出相等關(guān)系。

  分式教學(xué)反思 篇22

  通過例題由我先作一示范,學(xué)生練習格式,接著出現(xiàn)有增根的練習題,依然讓學(xué)生解決,由于學(xué)生不會檢驗培根的情況,所以,些時再詳究增根產(chǎn)生的原因,怎樣檢驗增根等問題。

  這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學(xué)生一個完全自由的空間還是說讓學(xué)生在老師的引導(dǎo)下去完成,我們先后作了多次試驗和論證,認為“完全開放”符合設(shè)計思路,但是學(xué)生在有限的.時間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定采用第二套方案。

  在本課的教學(xué)過程中,我認為應(yīng)從這樣的幾個方面入手:

  1、分式方程和整式方程的區(qū)別;

  2、分式方程和整式方程的聯(lián)系;

  3、解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學(xué)生準確無誤地找出最簡公分母;

  4、對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認真思考和討論。

  課堂效果:在這節(jié)課上,11班學(xué)生狀態(tài)非常好,所有的學(xué)生都能積極思考,踴躍回答問題,感覺這節(jié)課的效果還是不錯的。

  分式教學(xué)反思 篇23

  本節(jié)的教學(xué)重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點是如何將分式方程轉(zhuǎn)化成整式方程。

  下面結(jié)合教學(xué)過程談?wù)勛约旱膸c感悟:

  一、知識鏈接部分我設(shè)計了分式有無意義和找?guī)捉M分式的最簡公分母,幫助學(xué)生回憶舊知識,并且為本節(jié)課解分式方程掃清障礙。

  反思:在這個環(huán)節(jié)里,出現(xiàn)了一個問題,就是對學(xué)生估計過高,尤其是最簡公分母的找法中下游的學(xué)生把舊知識忘了,造成浪費了課上的時間。

  二、由課本中的百米賽跑的應(yīng)用題引出分式方程的概念。我把課本中的閱讀和一起探究改為幾個小問題讓學(xué)生自主探究然后小組內(nèi)交流討論。由于學(xué)生對于應(yīng)用題的掌握太差,造成在這個環(huán)節(jié)浪費了太多的時間。

  反思:因為本節(jié)課的重點和難點是解分式方程,所以在以后的教學(xué)中我個人認為這一部分應(yīng)該不用。改為解簡單的整式方程,再給出幾個分式方程讓學(xué)生自己判斷直接得出分式方程的'意義,節(jié)省出時間讓學(xué)生重點學(xué)習和練習解分式方程。本節(jié)課值得欣喜的是四班的優(yōu)生反應(yīng)靈敏,

  四、讓學(xué)生自學(xué)課本例一,也就是解分式方程,分析課本做法的依據(jù),和自己的做法是在否一致,會用課本的方法解題?赐旰,我讓學(xué)生自己做到導(dǎo)綱上。很多同學(xué)看完后還不是很理解,所以,我又讓小組自己討論了一下,弄明白如何做題。最后,我在黑板上板書了例題,然后,讓學(xué)生將自己的糾正一下。

  反思:這個內(nèi)容是這節(jié)的重難點,由于前面已經(jīng)做過鋪墊,讓學(xué)生自己嘗試解過分式方程,所以,在這里我設(shè)想的是學(xué)生看完課本,明白教材的做法,自己會運用同樣的方法解決分式方程。但是,在實際的操作過程中,發(fā)現(xiàn)一個問題,同學(xué)們并沒有真正理解教材時怎么處理的,他們被第二環(huán)節(jié)中自己的做法禁錮住了,很多同學(xué)都先通分。通分很好,但通分的目的還是為了去分母。這點我沒有強調(diào)到位。同時,檢驗的過程我沒有板書在黑板,只是口頭強調(diào)了一下,致使很多學(xué)生印象不深,沒有進行檢驗。

  糾正措施:重點強調(diào)化分式方程為整式方程的依據(jù)和做法。就這一步,安排幾個題進行專門訓(xùn)練,小組合作,直到每個組員都能找到最簡公分母,并會去掉分母為止。將第二課時提到這節(jié)點撥,在這節(jié)就讓學(xué)生明白分式方程為何要檢驗,從開始就讓學(xué)生養(yǎng)成檢驗的好習慣。

  五、歸納解分式方程的一般步驟。根據(jù)上面的解題過程,小組總結(jié)出解題步驟。(在提示中,學(xué)生初步了解了大體步驟)

  六、自學(xué)課本例二,弄明白后做到導(dǎo)綱上。

  (這個環(huán)節(jié)設(shè)置的目的是讓學(xué)生進一步熟悉分式方程的解法。注意一些細節(jié)問題。)

  七、鞏固練習。做導(dǎo)綱四道題。小組批閱。

  八、總結(jié)這節(jié)課的知識。(由于前面進行不是很順利,總結(jié)有些匆忙)

  總體反思

  這節(jié)課是一堂新授課。因此,讓學(xué)生對知識有透徹的理解是最重要的。我們的導(dǎo)綱也設(shè)置了很多的環(huán)節(jié)來引導(dǎo)學(xué)生,提高學(xué)生的學(xué)習興趣。

  本節(jié)課的關(guān)鍵是如何過渡,究竟是給學(xué)生一個完全自由的空間還是讓學(xué)生在老師的引導(dǎo)下去完成,“完全開放”符合設(shè)計思路,符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),因此,先講解,做示范,再練習更好些。

  在教學(xué)過程中,由于種種原因,存在著不少的不足。

  1、回顧引入部分題目有點多,難度有些高,沒有達到原來設(shè)想的調(diào)動積極性的作用。應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認知規(guī)律。

  2、由于經(jīng)驗不足,隨機應(yīng)變的能力有些欠缺,對在教學(xué)中出現(xiàn)的新問題,應(yīng)對的不理想,沒有立刻采取有效措施解決問題。例如,在復(fù)習整式方程時,學(xué)生并不像想象中對整式方程解題過程很了解,我就引導(dǎo)大家一起復(fù)習了一下,在這里,如果再臨時出幾個題目鞏固一下,效果也許更好些。

  3、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,在看例一的過程中,每一步的依據(jù)都進行了講解,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。同時,通過板書示范分式方程的解題。

  4、時間掌握不夠。備學(xué)生不夠充分,導(dǎo)致突發(fā)事件過多,時間被浪費了,以致總結(jié)過于匆忙。

  這次的課讓我感觸頗深。在各位老教師無私地指導(dǎo)和細心地講評中,我更看到了自己的不足,在今后的教學(xué)中,我會多思考,充分的將“學(xué)生備好”,多積累經(jīng)驗,向老教師請教,培養(yǎng)自己應(yīng)對突發(fā)情況的能力,做個成功的“引導(dǎo)者”。

  分式教學(xué)反思 篇24

  本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學(xué)生參照一元一次方程的解法,由學(xué)生自己探索、歸納分式方程的解法。學(xué)生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學(xué)生的思維得到發(fā)揮。

  在教學(xué)設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供了學(xué)生自主探究的舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生探究、歸納的能力。在課堂教學(xué)中,我時時注意營造思維氛圍,讓學(xué)生在探究中學(xué)會思考、表達。

  在本課的.教學(xué)過程中,我認為應(yīng)從這樣的幾個方面入手:

  1. 分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。

  2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。

  3. 解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學(xué)生準確無誤地找出最簡公分母

  4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認真思考和討論。

  在教學(xué)方法上,我采用類比滲透思想方法進行教學(xué),通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學(xué)生自主探究、歸納分式方程的解法。運用類比教學(xué)法具有以下三方面的優(yōu)點:

  1.通過復(fù)習一元一次方程的解法,學(xué)生在探究、歸納分式方程解法的同時進行類比,讓學(xué)生在解分式方程時有法可循,而不會覺得無從下手。

  2.把分式方程的解法與一元一次方程的解法進行相比較,讓學(xué)生既可以溫習舊知識,又可以加深對新知識的記憶。

  3.通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。

【分式教學(xué)反思】相關(guān)文章:

分式的教學(xué)反思11-25

分式加減教學(xué)反思11-24

分式的定義教學(xué)反思11-19

分式的乘除教學(xué)反思范文05-20

《認識分式》的教學(xué)反思通用04-24

分式和方程教學(xué)反思12-08

分式方程教學(xué)反思范文通用04-24

夜色教學(xué)反思教學(xué)反思11-25

匆匆教學(xué)反思教學(xué)反思11-17