- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
關(guān)于平行四邊形教案匯總8篇
作為一名專為他人授業(yè)解惑的人民教師,通常需要用到教案來輔助教學(xué),編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的平行四邊形教案8篇,僅供參考,希望能夠幫助到大家。
平行四邊形教案 篇1
第五冊(cè)平行四邊形、三角形面積公式
教學(xué)過程
師:小朋友們,今天劉老師帶來一個(gè)信封,誰(shuí)來猜猜里面藏著什么?
生1:卡片。
生2:獎(jiǎng)品。
……
師:同學(xué)們的想象力真豐富!我請(qǐng)小朋友上來把它揪出來,但你每拿出一件物品得向小朋友們介紹,你打算用它干什么?
(學(xué)生逐個(gè)上臺(tái)從信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪東西。(師:板書:剪)
生2:我拿出的是一格格的東西,打算用它來量。
師: 我們給它一個(gè)名字,透明方格紙,用它量什么呢?
生2:我想用它量書本。
師: 書本的 ……(停頓)
生2:書面有幾格?
師: 書的表面有幾格其實(shí)就是它的面積,我們用1平方厘米的方格紙數(shù)它的面積 。(板書:數(shù))
生3:我拿出的是平行四邊形(學(xué)具),我想知道它的許多秘密。
師: 平形四邊形的秘密,這詞用得真好!你的寫作水平一定高。待會(huì)我們來研究它
這節(jié)課我們就用剛才這些學(xué)具來研究平行四邊形的面積。
教學(xué)反思
這是一個(gè)展示學(xué)具的片段。它們都是為學(xué)生研究平形四邊形、三角形的. 面積公式服務(wù)的。分別有:剪刀一把、塑料透明方格一張、平行四邊形、三角形模型各二張。何必如此耗費(fèi)時(shí)間呢?直接出示學(xué)具,學(xué)生不也能知道呢?
不!俗話說:磨刀不誤砍柴功。我認(rèn)為直接出示學(xué)具,不能引起學(xué)生對(duì)學(xué)具的重視,對(duì)其作用更是模棱兩可,將為小組合作學(xué)習(xí)埋下“隱患”。學(xué)生面對(duì)一堆學(xué)具,面對(duì)要完成的任務(wù)手足無措,不知該從哪下手。這樣豈不是更浪費(fèi)時(shí)間,或者學(xué)具將失去它的作用,平形四邊形、三角形的面積公式無法推導(dǎo)。
……
教學(xué)過程
師:我們已研究出平行四邊形的面積公式,成為了發(fā)現(xiàn)者。這可是一項(xiàng)了不起的創(chuàng)舉。讓我們?cè)俳釉賲,發(fā)現(xiàn)更多的數(shù)學(xué)奧秘。如果我只給你一把剪刀、一張平行四邊形的學(xué)具,你還能發(fā)現(xiàn)其他圖形的面積公式嗎?
(學(xué)生動(dòng)手操作,不久就紛紛舉手)
生1:老師,我把對(duì)角一剪就變成了兩個(gè)三角形。
生2:老師,我剪出的三角形兩個(gè)一樣的。
師: 你們真厲害!對(duì)角一剪就變成了兩個(gè)完全一樣的三角形,你能從平行四邊形的
面積公式推導(dǎo)出三角形的面積公式嗎?
。▽W(xué)生小組討論)
生3:就是除以2。
師: 你能完整的說一說什么除以2嗎?
生3:平行四邊形的面積除以2。用字母表示:S=ab2。
生4:我能把它剪成兩個(gè)梯形教后反思
教材編排中平形四邊形、三角形的面積公式推導(dǎo)各安排了二個(gè)課時(shí),三角形的面積公式又重新推導(dǎo)一次。而在本堂課上在平行四邊形后學(xué)生僅用了5分鐘就推導(dǎo)并掌握了三角形的面積公式;ㄗ钌俚臅r(shí)間掌握一節(jié)課的內(nèi)容,何樂而不為呢?
現(xiàn)在使用的教材存在著許多的弊端,教師如果只是根據(jù)教材按部就班有時(shí)就出現(xiàn)事倍功半的現(xiàn)象,而且難以達(dá)到預(yù)定的效果。而如果教師能運(yùn)用教材進(jìn)行靈活的運(yùn)用,或是根據(jù)學(xué)生的特點(diǎn)重新組織教材,創(chuàng)設(shè)更有效的更能引起學(xué)生注意的課題導(dǎo)入設(shè)計(jì)、問題設(shè)計(jì),讓學(xué)對(duì)本節(jié)課產(chǎn)生極高的興趣,讓學(xué)生自己去發(fā)現(xiàn)問題,去解決問題,使教師的教和學(xué)生的學(xué)達(dá)到理想的境界,正如肖川教授所說的“使我們的教學(xué)達(dá)到完美的教育!
平行四邊形教案 篇2
教學(xué)過程
一、課堂引入
1.平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?
2.你能說說平行四邊形性質(zhì)與判定的用途嗎?
。ù穑浩叫兴倪呅沃R(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題.例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.)
3.創(chuàng)設(shè)情境
實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)
圖中有幾個(gè)平行四邊形?你是如何判斷的?
二、例習(xí)題分析
例1(教材P98例4)如圖,點(diǎn)D、E、分別為△ABC邊AB、AC的中點(diǎn),求證:DE∥BC且DE=BC.
分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來證明結(jié)論成立,從而使問題得到解決,這就需要添加適當(dāng)?shù)妮o助線來構(gòu)造平行四邊形.
方法1:如圖(1),延長(zhǎng)DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
。ㄒ部梢赃^點(diǎn)C作CF∥AB交DE的'延長(zhǎng)線于F點(diǎn),證明方法與上面大體相同)
方法2:如圖(2),延長(zhǎng)DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因?yàn)锳D=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
【思考】:
(1)想一想:①一個(gè)三角形的中位線共有幾條?②三角形的中位線與中線有什么區(qū)別?
。2)三角形的中位線與第三邊有怎樣的關(guān)系?
(答:(1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同.中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線.(2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半.)
三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半。
平行四邊形教案 篇3
教學(xué)目標(biāo)
知識(shí)與技能:
。保箤W(xué)生理解平行四邊形和梯形的概念及特征。
2.使學(xué)生了解學(xué)過的所有四邊形之間的關(guān)系,并會(huì)用集合圖表示。
過程與方法:
通過操作活動(dòng),使學(xué)生經(jīng)歷認(rèn)識(shí)平行四邊形和梯形的全過程,掌握它們的特征。
情感態(tài)度和價(jià)值觀:
通過活動(dòng),讓學(xué)生從中感受到學(xué)習(xí)的樂趣,體會(huì)到成功的喜悅,從而提高學(xué)習(xí)的興趣。
重點(diǎn)理解平行四邊形和梯形的概念及特征。了解學(xué)過的所有四邊形之間的關(guān)系,并會(huì)用集合圖表示。
難點(diǎn)理解平行四邊形和梯形的概念及特征。用集合圖表示學(xué)過的所有四邊形之間的關(guān)系。
教具圖形,剪子,七巧板
教學(xué)過程
教師導(dǎo)學(xué)
一、創(chuàng)設(shè)情景感知圖形
。保鍪纠1,我們認(rèn)識(shí)過平行四邊形,你能說出哪些地方見過平行四邊形?(64頁(yè))
2.在我們美麗的校園中,你能找到哪些四邊形?
梯子的'側(cè)面-梯形
3.畫出你喜歡的一個(gè)四邊形。說一說什么樣的圖形是四邊形?
展示學(xué)生畫出的四邊形,請(qǐng)學(xué)生標(biāo)出它們的名稱。
長(zhǎng)方形 平行四邊形
梯形 正方形
4.小組交流:
從四邊形的特點(diǎn)來看,四邊形可以分成幾類?
學(xué)生討論交流
二、探究新知
1.歸納平行四邊形和梯形的概念
有什么特點(diǎn)的圖形是平行四邊形?
兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
強(qiáng)調(diào)說明:只要四邊形的每組對(duì)邊分別平行,就能確定它的每組對(duì)邊相等。因此平行四邊形的定義是兩組對(duì)邊分別平行的四邊形。
提問:
、偕钪心阋娺^這樣的圖形嗎? 它們的外形像什么?
②這些圖形有幾條邊?幾個(gè)角?是什么圖形?
③這幾個(gè)四邊形有邊有什么特點(diǎn)?
④它是平行四邊形嗎?
⑤你們?cè)诹窟@些圖形時(shí),是否發(fā)現(xiàn)它們都有一個(gè)共同的特點(diǎn)?如果有,是什么?
只有一組對(duì)邊平行的四邊形叫做梯形。
。担F(xiàn)在你有什么問題嗎?
長(zhǎng)方形和正方形是平行四邊形嗎?為什么?
。叮眉蠄D表示四邊形之間的關(guān)系。我們學(xué)過的長(zhǎng)方形、正方形、平行四邊形、剛剛認(rèn)識(shí)的梯形,你能用這個(gè)集合圈來表示他們的關(guān)系嗎?
平行四邊形教案 篇4
教材分析
本節(jié)課既是七年級(jí)平行線的性質(zhì)、全等三角形等知識(shí)的延續(xù)和深化,也是后續(xù)學(xué)習(xí)矩形、菱形、正方形等知識(shí)的堅(jiān)實(shí)基礎(chǔ)。本節(jié)課是在學(xué)生掌握了平移等知識(shí)的基礎(chǔ)上探究平行四邊形的性質(zhì),能使學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),對(duì)于培養(yǎng)學(xué)生的推理能力、發(fā)散思維能力以及探索、體驗(yàn)數(shù)學(xué)思維規(guī)律等方面起著重要的`作用。
學(xué)情分析
八年級(jí)學(xué)生有一定的自學(xué)、探索能力,求知欲強(qiáng)。并且,學(xué)生 在小學(xué)里已經(jīng)初步學(xué)習(xí)過平行四邊形,對(duì)平行四邊形有直觀的感知和認(rèn)識(shí)。在掌握平行線和相交線有關(guān)幾何事實(shí)的過程中,學(xué)生已經(jīng)初步經(jīng)歷過觀察、操作等活動(dòng)過程,獲得了一定的探索圖形性質(zhì)的活動(dòng)經(jīng)驗(yàn);同時(shí),在學(xué)習(xí)數(shù)學(xué)的過程中也經(jīng)歷了很多合作過程,具有了一定的學(xué)習(xí)經(jīng)驗(yàn),具備了一定的合作和交流能力。借助于遠(yuǎn)教資源的優(yōu)勢(shì),能使腦、手充分動(dòng)起來,學(xué)生間相互探討,積極性也被充分調(diào)動(dòng)起來。在此基礎(chǔ)上學(xué)習(xí)平行四邊形的性質(zhì),可以比較自然地得出平行四邊形的性質(zhì)。
教學(xué)目標(biāo)
、濉⒅R(shí)與技能:
1、理解并掌握平行四邊形的定義;
2、掌握平行四邊形的性質(zhì)定理;
3、理解兩條平行線的距離的概念;
4、培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力;
、妗⑦^程與方法:經(jīng)歷探索平行四邊形的有關(guān)概念和性質(zhì)的過程, 發(fā)展學(xué)生的探究意識(shí)和合情推理的能力。
、纭⑶楦袘B(tài)度與價(jià)值觀:培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和勇于探索的思想意識(shí),體會(huì)幾何知識(shí)的內(nèi)涵與實(shí)際應(yīng)用價(jià)值。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì)以及性質(zhì)的應(yīng)用。
難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算。
平行四邊形教案 篇5
教學(xué)目標(biāo):
1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積.
2.通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.
3.對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育.
教學(xué)重點(diǎn):理解公式并正確計(jì)算平行四邊形的面積.
教學(xué)難點(diǎn):理解平行四邊形面積公式的推導(dǎo)過程.
學(xué)具準(zhǔn)備:每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。
教學(xué)過程:
1、什么是面積?
2、請(qǐng)同學(xué)翻書到80頁(yè),請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長(zhǎng)方形花壇的長(zhǎng)是3米,寬是2米,怎樣計(jì)算它的面積呢?
一、導(dǎo)入新課
根據(jù)長(zhǎng)方形的面積=長(zhǎng)×寬(板書),得出長(zhǎng)方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計(jì)算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。
二、講授新課
(一)、數(shù)方格法
用展示臺(tái)出示方格圖
1、這是什么圖形?(長(zhǎng)方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長(zhǎng)方形的面積是多少?(18平方厘米)
2、這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?
請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。
2、請(qǐng)同學(xué)看方格圖填80頁(yè)最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么?
小結(jié):如果長(zhǎng)方形的長(zhǎng)和寬分別等于平行四邊形的底和高,則它們的面積相等。
(二)引入割補(bǔ)法
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。
(三)割補(bǔ)法
1、這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?
2、然后指名到前邊演示。
3、教師示范平行四邊形轉(zhuǎn)化成長(zhǎng)方形的過程。
剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形時(shí),就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長(zhǎng)方形。在變換圖形的位置時(shí),怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。
、傧妊刂叫兴倪呅蔚母呒粝伦筮叺闹苯侨切巍
、谧笫职醋∈O碌奶菪蔚挠也浚沂帜弥粝碌闹苯侨切窝刂走吢蛴乙苿(dòng)。
、垡苿(dòng)一段后,左手改按梯形的左部。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動(dòng),到兩個(gè)斜邊重合為止。
請(qǐng)同學(xué)們把自己剪下來的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動(dòng),直到兩個(gè)斜邊重合。(教師巡視指導(dǎo)。)
4、觀察(黑板上在剪拼成的長(zhǎng)方形左面放一個(gè)原來的平行四邊形,便于比較。)
①這個(gè)由平行四邊形轉(zhuǎn)化成的長(zhǎng)方形的面積與原來的平行四邊形的面積比較,有沒有變化?為什么?
、谶@個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底有什么樣的'關(guān)系?
③這個(gè)長(zhǎng)方形的寬與平行四邊形的高有什么樣的關(guān)系?
教師歸納整理:任意一個(gè)平行四邊形都可以轉(zhuǎn)化成一個(gè)長(zhǎng)方形,它的面積和原來的平行四邊形的面積相等,它的長(zhǎng)、寬分別和原來的平行四邊形的底、高相等。
5、引導(dǎo)學(xué)生總結(jié)平行四邊形面積計(jì)算公式。
這個(gè)長(zhǎng)方形的面積怎么求?(指名回答后,在長(zhǎng)方形右面板書:長(zhǎng)方形的面積=長(zhǎng)×寬)
那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底×高。)
6、教學(xué)用字母表示平行四邊形的面積公式。
板書:S=a×h,告知S和h的讀音。
說明在含有字母的式子里,字母和字母中間的乘號(hào)可以記作“”,寫成ah,也可以省略不寫,所以平行四邊形面積的計(jì)算公式可以寫成S=ah,或者S=ah。
。6)完成第81頁(yè)中間的“填空”。
7、驗(yàn)證公式
學(xué)生利用所學(xué)的公式計(jì)算出“方格圖中平行四邊形的面積”和用數(shù)方格的方法求出的面積相比較“相等”,加以驗(yàn)證。
條件強(qiáng)化:求平行四邊形的面積必須知道哪兩個(gè)條件?(底和高)
。ㄋ模⿷(yīng)用
1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問題講解。
3、判斷,并說明理由。
(1)兩個(gè)平行四邊形的高相等,它們的面積就相等()
(2)平行四邊形底越長(zhǎng),它的面積就越大()
4、做書上82頁(yè)2題。
三、體驗(yàn)
今天,你學(xué)會(huì)了什么?怎樣求平行四邊形的面積?平行四邊形的面積計(jì)算公式是怎樣推導(dǎo)的?
四、作業(yè)
練習(xí)十五第1題。
五、板書設(shè)計(jì)
平行四邊形面積的計(jì)算
長(zhǎng)方形的面積=長(zhǎng)×寬 平行四邊形的面積=底×高
S=a×hS=ah或S=ah
平行四邊形教案 篇6
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):經(jīng)歷動(dòng)手操作、討論、歸納等探討平行四邊形面積公式,并能用字母表示,會(huì)用公式計(jì)算平行四邊形面積。
2、能力目標(biāo):在剪一剪、拼一拼中發(fā)展空間觀念;在想一想、看一看中初步感知“轉(zhuǎn)化”的數(shù)學(xué)思想和方法。
3、過程與方法:通過觀察、操作、測(cè)量、思考、討論交流等數(shù)學(xué)活動(dòng),體會(huì)轉(zhuǎn)化等數(shù)學(xué)方法,發(fā)展推理能力。
4、情感態(tài)度與價(jià)值觀:使學(xué)生在探索平行四邊形面積的計(jì)算方法中,獲得成功的體驗(yàn),形成積極的數(shù)學(xué)學(xué)習(xí)情感
教學(xué)重點(diǎn):
讓學(xué)生充分利用手中的學(xué)具,在動(dòng)手操作推導(dǎo)平行四邊形面積公式的過程中,理解并掌握平行四邊形面積的計(jì)算方法,能正確計(jì)算平行四邊形的面積。
教學(xué)難點(diǎn):
讓學(xué)生在推導(dǎo)和驗(yàn)證平行四邊形面積公式的過程中,充分體驗(yàn)轉(zhuǎn)化的數(shù)學(xué)思想,形成一定探究意識(shí)和能力,發(fā)展空間觀念。
教學(xué)準(zhǔn)備:
平行四邊形卡片、剪刀、三角板
教學(xué)過程:
一、課前復(fù)習(xí),回顧舊知
1、 長(zhǎng)方形面積公式是什么?(勾起學(xué)生對(duì)已有知識(shí)的回顧,為學(xué)習(xí)平行四邊形面積公式做鋪墊)
2、 生:長(zhǎng)方形面積=長(zhǎng)×寬。
二、提出問題,導(dǎo)入新課
1、出示主題圖:(看課本第86頁(yè)的圖)
。1)、發(fā)現(xiàn)了哪些圖形?你會(huì)求哪些圖形的面積?
(2)、故事引入
學(xué)校門前有兩個(gè)大花壇,左邊的是長(zhǎng)方形的,右邊的是平行四邊形的,F(xiàn)在準(zhǔn)備把花壇里面的草換成美麗的蝴蝶花,這個(gè)分別交給五(1)班和五(2)班負(fù)責(zé)。這時(shí)同學(xué)們爭(zhēng)論開了,有的同學(xué)說長(zhǎng)方形的面積大,有的說平行四邊形的面積大,又有的同學(xué)說“還不是一樣大嘛?”同學(xué)們,今天就讓我們來幫幫他們判斷一下哪個(gè)花壇的面積大。
師:我把花壇縮小成我手上的圖形(出示縮小的兩個(gè)圖形,讓學(xué)生比較)
比較方法:
1、疊起來比;(比不了,形狀不一樣)
2、數(shù)方格比。
師:平行四邊形的面積還有其它數(shù)法嗎?(引出轉(zhuǎn)化成長(zhǎng)方形的方法)在實(shí)際問題上,這種方法行嗎?不行,麻煩而且不實(shí)際,能不能像計(jì)算長(zhǎng)方形面積那樣計(jì)算出來呢?今天,就讓我們來探討平行四邊形的面積的計(jì)算方法。(板書課題)
三、探索發(fā)現(xiàn)、推導(dǎo)公式
1、猜想:平行四邊形的面積跟什么有關(guān)系呢?(板書:底和高;兩條邊)
2、驗(yàn)證:科學(xué)是從猜想到驗(yàn)證的一個(gè)過程,現(xiàn)在就讓我們用事實(shí)來說話吧。
課本中的同學(xué)們也忙開了,讓我們來看看他們?cè)诟墒裁?打開88頁(yè),看看課本上半頁(yè)的圖。他們?cè)诟墒裁茨?(把平行四邊形剪拼成長(zhǎng)方形)
現(xiàn)在,同學(xué)們也用剪拼的辦法,把平行四邊形轉(zhuǎn)化成長(zhǎng)方形,每個(gè)學(xué)習(xí)小組長(zhǎng)的手上都有一個(gè)平行四邊形,每個(gè)小組的同學(xué)合作,剪一剪,拼一拼,看看那組的同學(xué)合作最好,先來看看我們的導(dǎo)學(xué)提綱。
小組根據(jù)導(dǎo)學(xué)提綱進(jìn)行合作學(xué)習(xí)
。1)怎樣把平行四邊形紙片剪一刀,拼成一個(gè)長(zhǎng)方形呢?(剪前,小組要先討論出怎樣剪,拼成的才一定是長(zhǎng)方形。)
。2)討論:平行四邊形轉(zhuǎn)化成長(zhǎng)方形后面積變了嗎?
。3)討論:轉(zhuǎn)化成的長(zhǎng)方形的長(zhǎng)和平行四邊形的.底是否相等?
(4)討論:轉(zhuǎn)化成的長(zhǎng)方形的寬和平行四邊形的高是否相等?
3、學(xué)生操作驗(yàn)證
師:這個(gè)剪拼的任務(wù)就交給你們了。
4、交流匯報(bào)
。1)生1:先在平行四邊形上畫一條高,沿著高剪開,把平行四邊形分成了一個(gè)三角形,一個(gè)梯形,然后把三角形向右平移,拼成了長(zhǎng)方形。
生2:在平行四邊形上畫一條高,然后沿高剪開,分成了兩個(gè)梯形,然后把左邊的梯形向右平移,拼成了長(zhǎng)方形。
師:這樣的變化過程在數(shù)學(xué)上叫做“轉(zhuǎn)化”,平行四邊形轉(zhuǎn)化成長(zhǎng)方形。
(2)面積沒變,只是形狀變了。
。3)長(zhǎng)方形的長(zhǎng)和平行四邊形的底相等。
。4)長(zhǎng)方形的寬和平行四邊形的高相等。
(5)平行四邊形的面積怎樣算?
5、集體推導(dǎo)
齊看演示剪拼的過程,學(xué)生自己口頭作答,再齊讀。(老師邊講解邊板書)
一個(gè)平行四邊形沿著任意一條高剪開,都可以拼成一個(gè)(長(zhǎng)方形),它的面積與平行四邊形的面積(相等),這個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的(底)相等,這個(gè)長(zhǎng)方形的寬與平行四邊形的(高)相等,因?yàn)殚L(zhǎng)方形的面積=(長(zhǎng) X 寬),所以平行四邊形的面積=(底 X 高)。
板書:長(zhǎng)方形的面積 = 長(zhǎng) X 寬
↓ ↓ ↓
平行四邊形的面積 = 底 X 高
6、字母表示公式
師:如果用字母S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么平行四邊形的面積計(jì)算公式可以寫成S=a×h(師板書)(在課本劃出公式,讀公式)
7、回到學(xué)生們的猜想,平行四邊形的面積是跟底和高有關(guān)系。我們也可以用計(jì)算的方法來求出平行四邊形的面積了。
師:同學(xué)們多了不起啊,自己實(shí)踐得出了真理,科學(xué)就是這樣一步步的向前推進(jìn)的。
8、運(yùn)用公式:學(xué)習(xí)88頁(yè)例1
師:讓我們回到學(xué)校門前的花壇吧。
出示題目,學(xué)生讀題,學(xué)生口答,老師板書過程。
9、回到同學(xué)們的爭(zhēng)論,兩個(gè)花壇的面積是一樣大的,科學(xué)實(shí)踐還是解決爭(zhēng)論的最好辦法。
三、鞏固拓展
1、課本89:第1題。(學(xué)生在練習(xí)本中解答)
2、口答:下面的平行四邊形的面積是多少平方厘米?
3、選擇題:(區(qū)分對(duì)應(yīng)的底和高)
4、實(shí)際應(yīng)用:課本89:第4題第1個(gè)圖(先量出底和高,再計(jì)算) 求樓梯扶手的面積。
5、口答
。1)平行四邊形的底不變,高擴(kuò)大2倍,面積就( )。
。2)平行四邊形的高不變,底縮小2倍,面積就( )。
。3)平行四邊形的底擴(kuò)大2倍,高也擴(kuò)大2倍,面積( )。
四、總結(jié)全課,提高認(rèn)識(shí)
1、通過今天的學(xué)習(xí),你有那些收獲?還有那些遺憾的地方?
2、今天,我們用轉(zhuǎn)化割補(bǔ)法學(xué)習(xí)了平行四邊形面積計(jì)算,希望同學(xué)們把它運(yùn)用到今后的學(xué)習(xí)生活中去,真正做到學(xué)以致用。
板書設(shè)計(jì):
平行四邊形的面積
長(zhǎng)方形的面積 = 長(zhǎng)×寬
↓ ↓ ↓
平行四邊形的面積= 底×高
S = a×h
平行四邊形教案 篇7
教學(xué)目標(biāo):
1、使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積
2、通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.
3、對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育.
教學(xué)重點(diǎn):
理解公式并正確計(jì)算平行四邊形的面積.
教學(xué)難點(diǎn):
理解平行四邊形面積公式的推導(dǎo)過程.
學(xué)具準(zhǔn)備:
每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。
教學(xué)過程:
一、導(dǎo)入新課。
1、請(qǐng)同學(xué)翻書到86頁(yè),仔細(xì)觀察,找一找圖中有哪些學(xué)過的圖形?
2、好,下面誰(shuí)來說一說你找到了哪些學(xué)過的圖形?
3、請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長(zhǎng)方形花壇的長(zhǎng)是3米,寬是2米,怎樣計(jì)算它的面積呢?根據(jù)長(zhǎng)方形的面積=長(zhǎng)寬(板書),得出長(zhǎng)方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計(jì)算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。
二、民主導(dǎo)學(xué)
。ㄒ唬(shù)方格法
用展示臺(tái)出示方格圖
1、這是什么圖形?(長(zhǎng)方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長(zhǎng)方形的面積是多少?(18平方厘米)
2、這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?
請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。
3、請(qǐng)同學(xué)看方格圖填87頁(yè)最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么?
小結(jié):如果長(zhǎng)方形的長(zhǎng)和寬分別等于平行四邊形的底和高,則它們的面積相等。
(二)引入割補(bǔ)法
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。
(三)割補(bǔ)法
1、這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?
2、然后指名到前邊演示。
3、教師示范平行四邊形轉(zhuǎn)化成長(zhǎng)方形的過程。
剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形時(shí),就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長(zhǎng)方形。在變換圖形的位置時(shí),怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。
①先沿著平行四邊形的高剪下左邊的直角三角形。
、谧笫职醋∈O碌奶菪蔚挠也,右手拿著剪下的直角三角形沿著底邊慢慢向右移動(dòng)。
、垡苿(dòng)一段后,左手改按梯形的左部。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動(dòng),到兩個(gè)斜邊重合為止。
請(qǐng)同學(xué)們把自己剪下來的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動(dòng),直到兩個(gè)斜邊重合。(教師巡視指導(dǎo)。)
4、觀察(黑板上在剪拼成的長(zhǎng)方形左面放一個(gè)原來的平行四邊形,便于比較。)
、龠@個(gè)由平行四邊形轉(zhuǎn)化成的長(zhǎng)方形的面積與原來的平行四邊形的面積比較,有沒有變化?為什么?
、谶@個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底有什么樣的關(guān)系?
③這個(gè)長(zhǎng)方形的寬與平行四邊形的'高有什么樣的關(guān)系?
教師歸納整理:任意一個(gè)平行四邊形都可以轉(zhuǎn)化成一個(gè)長(zhǎng)方形,它的面積和原來的平行四邊形的面積相等,它的長(zhǎng)、寬分別和原來的平行四邊形的底、高相等。
5、引導(dǎo)學(xué)生總結(jié)平行四邊形面積計(jì)算公式。
這個(gè)長(zhǎng)方形的面積怎么求?(指名回答后,在長(zhǎng)方形右面板書:長(zhǎng)方形的面積=長(zhǎng)寬)
那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底高。)
6、教學(xué)用字母表示平行四邊形的面積公式。
板書:S=ah
說明在含有字母的式子里,字母和字母中間的乘號(hào)可以記作,寫成ah,也可以省略不寫,所以平行四邊形面積的計(jì)算公式可以寫成S=ah,或者S=ah。
。6)完成第81頁(yè)中間的填空。
7、驗(yàn)證公式
學(xué)生利用所學(xué)的公式計(jì)算出方格圖中平行四邊形的面積和用數(shù)方格的方法求出的面積相比較相等 ,加以驗(yàn)證。
條件強(qiáng)化:求平行四邊形的面積必須知道哪兩個(gè)條件?(底和高)
三、檢測(cè)導(dǎo)結(jié)
1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問題講解。
2、判斷,并說明理由。
。1)兩個(gè)平行四邊形的高相等,它們的面積就相等()
。2)平行四邊形底越長(zhǎng),它的面積就越大()
3、做書上82頁(yè)2題。
4、小結(jié)
今天,你學(xué)會(huì)了什么?怎樣求平行四邊形的面積?平行四邊形的面積計(jì)算公式是怎樣推導(dǎo)的?
5、作業(yè)
練習(xí)十五第1題。
附:板書設(shè)計(jì)
平行四邊形面積的計(jì)算
長(zhǎng)方形的面積=長(zhǎng)寬
平行四邊形的面積=底高
S=ah
S=ah或S=ah
平行四邊形教案 篇8
一、學(xué)習(xí)目標(biāo)
。薄⒔(jīng)歷探索多項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則的過程,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。
2、 會(huì)進(jìn)行簡(jiǎn)單的多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算
二、學(xué)習(xí)過程
。ㄒ唬┳詫W(xué)導(dǎo)航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長(zhǎng)m米、寬a米的長(zhǎng)方形林區(qū)的長(zhǎng)、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長(zhǎng)為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個(gè)算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個(gè)整體,你還能用別的方法得到這個(gè)等式嗎?
2、概括:
多項(xiàng)式乘以多項(xiàng)式的法則:
3、計(jì)算
。1) (2)
4、練一練
。1)
(二)合作攻關(guān)
1、某酒店的廚房進(jìn)行改造,在廚房的中間設(shè)計(jì)一個(gè)準(zhǔn)備臺(tái),要求四面的過道寬都為x米,已知廚房的長(zhǎng)寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
(三)達(dá)標(biāo)訓(xùn)練
1、填空題:
。1) = =
(2) = 。
2、計(jì)算
(1) (2)
。3) (4)
。ㄋ模┨嵘
1、怎樣進(jìn)行多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算?
2、若 的乘積中不含 和 項(xiàng),則a= b=
應(yīng)用題
第三十五講 應(yīng)用題
在本講中將介紹各類應(yīng)用題的解法與技巧.
當(dāng)今數(shù)學(xué)已經(jīng)滲入到整個(gè)社會(huì)的各個(gè)領(lǐng)域,因此,應(yīng)用數(shù)學(xué)去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學(xué)競(jìng)賽的一個(gè)熱點(diǎn).
應(yīng)用性問題能引導(dǎo)學(xué)生關(guān)心生活、關(guān)心社會(huì),使學(xué)生充分到數(shù)學(xué)與自然和人類社會(huì)的密切聯(lián)系,增強(qiáng)對(duì)數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心.
解答應(yīng)用性問題,關(guān)鍵是要學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)去觀察、分析、概括所給的實(shí)際問題,揭示其數(shù)學(xué)本質(zhì),將其轉(zhuǎn)化為數(shù)學(xué)模型.其求解程序如下:
在初中范圍內(nèi)常見的數(shù)學(xué)模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應(yīng)用題
數(shù)與式是最基本的數(shù)學(xué)語(yǔ)言,由于它能夠有效、簡(jiǎn)捷、準(zhǔn)確地揭示數(shù)學(xué)的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達(dá)數(shù)學(xué)問題的重要方法.
【例1】(20xx年安徽中考題)某風(fēng)景區(qū)對(duì)5個(gè)旅游景點(diǎn)的門票價(jià)格進(jìn)行了調(diào)整,據(jù)統(tǒng)計(jì),調(diào)價(jià)前后各景點(diǎn)的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點(diǎn)ABCDE
原價(jià)(元)1010152025
現(xiàn)價(jià)(元)55152530
平均日人數(shù)(千人)11232
。1)該風(fēng)景區(qū)稱調(diào)整前后這5個(gè)景點(diǎn)門票的平均收費(fèi)不變,平均日總收入持平。問風(fēng)景區(qū)是怎樣計(jì)算的?
。2)另一方面,游客認(rèn)為調(diào)整收費(fèi)后風(fēng)景區(qū)的平均日總收入相對(duì)于調(diào)價(jià)前,實(shí)際上增加了約9.4%。問游客是 怎樣計(jì)算的?
。3)你認(rèn)為風(fēng)景區(qū)和游客哪一個(gè)的說法較能反映整體實(shí)際?
思路點(diǎn)撥 (1)風(fēng)景區(qū)是這樣計(jì)算的:
調(diào)整前的平均價(jià)格: ,設(shè)整后的平均價(jià)格:
∵調(diào)整前后的平均價(jià)格不變,平均日人數(shù)不變.
∴平均日總收入持平.
。 2)游客是這樣計(jì)算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
(3)游客的說法較能反映整體實(shí)際.
二、用方程模型解應(yīng)用題
研究和解決生產(chǎn)實(shí)際和現(xiàn)實(shí)生恬中有關(guān)問題常常要用到方程<組)的知識(shí),它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認(rèn)識(shí)和理解現(xiàn)實(shí)世界.
【例2】 (重慶中考題)某中學(xué)新建了一棟4層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對(duì)4道門進(jìn)行了測(cè)試:當(dāng)同時(shí)開啟一道正門和兩道側(cè)門時(shí),2min內(nèi)可以通過560名學(xué)生;當(dāng)同時(shí)開啟一道正門和一道側(cè)門時(shí),4mln內(nèi)可以通過800名學(xué)生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5min內(nèi)通過這4道門安全撤離.假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問:建造的這4道門整否符合安全規(guī)定?請(qǐng)說明理由.
思路點(diǎn)撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測(cè)試中通過的學(xué)生數(shù)量.設(shè)未知數(shù)時(shí)一般問什么設(shè)什么.“符合安全規(guī)定”之義為最大通過量不小于學(xué)生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過x名學(xué)生,一道側(cè)門可以通過y名學(xué)生,由題意得:
,解得:
(2)這棟樓最多有學(xué)生4×8×4 5=1440(名).
擁擠時(shí)5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應(yīng)用題
現(xiàn)實(shí)世界中的不等關(guān)系是普遍存在的,許多問題有時(shí)并不需要研究它們之間的相等關(guān)系,只需要確定某個(gè)量的變化范圍,即可對(duì)所研究的問題有比較清楚的認(rèn)識(shí).
【例3】 (蘇州中考題)我國(guó)東南沿海某地的風(fēng)力資源豐富,一年內(nèi)月平均的風(fēng)速不小于3m/s的時(shí)間共約160天,其中日平均風(fēng)速不小于6m/s的時(shí)間占60天.為了充分利用“風(fēng)能”這種“綠色資源”,該地?cái)M建一個(gè)小型風(fēng)力發(fā)電場(chǎng),決定選用A、B兩種型號(hào)的風(fēng)力發(fā)電機(jī),根據(jù)產(chǎn)品說明,這兩種風(fēng)力發(fā)電機(jī)在各種風(fēng)速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風(fēng)速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時(shí))A型發(fā)電機(jī)O≥36≥150
B型發(fā)電機(jī)O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個(gè)發(fā)電場(chǎng)購(gòu)x臺(tái)A型風(fēng)力發(fā)電機(jī),則預(yù)計(jì)這些A型風(fēng)力發(fā)電機(jī)一年的發(fā)電總量至少為 千瓦?時(shí);
(2)已知A型風(fēng)力發(fā)電機(jī)每臺(tái)O.3萬(wàn)元,B型風(fēng)力發(fā)電機(jī)每臺(tái)O.2萬(wàn)元.該發(fā)電場(chǎng)擬購(gòu)置風(fēng)力發(fā)電機(jī)共10臺(tái),希望購(gòu)機(jī)的費(fèi)用不超過2.6萬(wàn)元,而建成的風(fēng)力發(fā)電場(chǎng)每年的發(fā)電總量不少于102000千瓦?時(shí),請(qǐng)你提供符合條件的購(gòu)機(jī)方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點(diǎn)撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購(gòu)A型發(fā)電機(jī)x臺(tái),則購(gòu)B型發(fā)電機(jī)(10—x)臺(tái),
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購(gòu)A型發(fā)電機(jī)5臺(tái),B型發(fā)電機(jī)5臺(tái);或購(gòu)A型發(fā)電機(jī)6臺(tái),B型發(fā)電視4臺(tái).
四、用函數(shù)知識(shí)解決的應(yīng)用題
函數(shù)類應(yīng)用問題主要有以下兩種類型:(1)從實(shí)際問題出發(fā),引進(jìn)數(shù)學(xué)符號(hào),建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
【例4】 (揚(yáng)州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤(rùn)楊”報(bào)刊零售點(diǎn).對(duì)經(jīng)營(yíng)的某種晚報(bào),楊嫂提供丁如下信息:
、儋I進(jìn)每份0.20元,賣出每份0.30元;
、谝粋(gè)月內(nèi)(以30天計(jì)),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋(gè)月內(nèi),每天從報(bào)社買進(jìn)的報(bào)紙份數(shù)必須相同.當(dāng)天賣不掉的報(bào)紙,以每份0.10元退回給報(bào)社;
(1)填表:
一個(gè)月內(nèi)每天買進(jìn)該種晚報(bào)的份數(shù)100150
當(dāng)月利潤(rùn)(單位:元)
(2)設(shè)每天從報(bào)社買進(jìn)該種晚報(bào)x份,120≤x≤200時(shí),月利潤(rùn)為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤(rùn)的最大值.
思路點(diǎn)撥(1)填表:
一個(gè)月內(nèi)每天買進(jìn)該種晚報(bào)的份數(shù)100150
當(dāng)月利潤(rùn)(單位:元)300390
(2)由題意可知,一個(gè)月內(nèi)的20天可獲利潤(rùn):
20×=2x(元);其余10天可獲利潤(rùn):
10=240—x(元);
故y=x+240,(120≤x≤200), 當(dāng)x=200時(shí),月利潤(rùn)y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會(huì)提及統(tǒng)計(jì)型應(yīng)用題,幾何型應(yīng)用題.
【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個(gè)工程隊(duì)合做,12天可完成;如果由甲、乙兩隊(duì)單獨(dú)做,甲隊(duì)比乙隊(duì)少用10天完成.
。1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程所需的天數(shù).
(2)如果請(qǐng)甲工程隊(duì)施工,公司每日需付費(fèi)用200 0元;如果請(qǐng)乙工程隊(duì)施工,公司每日需付費(fèi)用1400元.在規(guī)定時(shí)間內(nèi):A.請(qǐng)甲隊(duì)單獨(dú)完成此項(xiàng)工程;B.請(qǐng)乙隊(duì)單獨(dú)完成此項(xiàng)工 程; C.請(qǐng)甲、乙兩隊(duì)合作完成此項(xiàng)工程.以上方案哪一種花錢最少?
思路點(diǎn)撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時(shí).
(1)設(shè)乙工程隊(duì)單獨(dú)完成此項(xiàng)工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需用20天,乙隊(duì)需30天.
(2)各種方案所需的費(fèi)用分別為:
A.請(qǐng)甲隊(duì)需20xx×20=40000元;
B.請(qǐng)乙隊(duì)需1400×30=4200元;
C.請(qǐng)甲、乙兩隊(duì)合作需(20xx+1400)×12=40800元.
所隊(duì)單獨(dú)請(qǐng)甲隊(duì)完成此項(xiàng)工程花錢最少.
【例6】 (2全國(guó)聯(lián)賽初賽題)一支科學(xué)考察隊(duì)前往某條河流的上游去考察一個(gè)生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進(jìn)若干天后到達(dá)目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊(duì)行進(jìn)了24km后回到出發(fā)點(diǎn),試問:科學(xué)考察隊(duì)的生態(tài)區(qū)考察了多少天?
思路點(diǎn)撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊(duì)到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的`一組合題意的解,然后計(jì)算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負(fù)整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識(shí)可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊(duì)在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來解,希讀者仔細(xì)咀嚼所用方法. 【例7】 (江蘇省第17屆初中競(jìng)賽題)華鑫超市對(duì)顧客實(shí)行優(yōu)惠購(gòu)物,規(guī)定如下: (1)若一次購(gòu)物少于200元,則不予優(yōu)惠; (2)若一次購(gòu)物滿200元,但不超過500元,按標(biāo)價(jià)給予九折優(yōu)惠; (3)若一次購(gòu)物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購(gòu)物,分別付款198元與554元.現(xiàn)在小亮決定一次去購(gòu) 買小明分兩次購(gòu)買的同樣多的物品,他需付款多少? 思路點(diǎn)撥 應(yīng)付198元購(gòu)物款討論: 第一次付款198元,可是所購(gòu)物品的實(shí)價(jià),未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論. 情形1 當(dāng)198元為購(gòu)物不打折付的錢時(shí),所購(gòu)物品的原價(jià)為198元 . 又554=450+104,其中450元為購(gòu)物500元打九折付的錢,104元為購(gòu)物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購(gòu)物品的原價(jià)為130+500=630(元),于是購(gòu)買小呀花198 +630=828(元)所購(gòu)的全部物品,小亮一次性購(gòu)買應(yīng)付500×0.9+(828-500)×0.8=712.4(元). 情形2 當(dāng)198元為購(gòu)物打九折付的錢時(shí),所購(gòu)物品的原價(jià)為198 ÷0.9=220(元) .仿情形1的討論,,購(gòu)220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購(gòu)買小明已購(gòu)的同樣多的物品,應(yīng)付款712.40元或730元 【例8】 (20xx年全國(guó)數(shù)學(xué)競(jìng)賽題)某項(xiàng)工程,如果由甲、乙兩隊(duì)承包,2 天完成,需180000元;由乙、丙兩隊(duì)承包,3 天完成,需付150000元;由甲、丙兩隊(duì)承包,2 天完成,需付160000元.現(xiàn)在工程由一個(gè)隊(duì)單獨(dú)承包,在保證一周完成的前提下,哪個(gè)隊(duì)承包費(fèi)用最少? 思路點(diǎn)撥 關(guān)鍵問題是甲、乙、丙單獨(dú)做各需的天數(shù)及獨(dú)做時(shí)各方日付工資.分兩個(gè)層次考慮: 設(shè)甲、乙、丙單獨(dú)承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨(dú)工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊(duì)單獨(dú)承包,費(fèi)用是45500×4=182000 (元). 由乙隊(duì)單獨(dú)承包,費(fèi)用是29500×6= 177000 (元). 而丙隊(duì)不能在一周內(nèi)完成.所以由乙隊(duì)承包費(fèi)用最少. 學(xué)歷訓(xùn)練 (A級(jí)) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴(kuò)散,某制藥廠接到了生產(chǎn)240箱過氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競(jìng)賽題)某市為鼓勵(lì)節(jié)約用水,對(duì)自來水妁收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費(fèi);超過10t而不超過20t部分按每噸0.8元收費(fèi);超過20t部分按每噸1.50元收費(fèi),某月甲戶比乙戶多繳水費(fèi)7.10元,乙戶比丙戶多繳水費(fèi)3.75元,問甲、乙、丙該月各繳水費(fèi)多少?(自來水按整噸收費(fèi)) 3.(江蘇省競(jìng)賽題)甲、乙、丙三人共解出100道數(shù)學(xué)題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費(fèi)標(biāo)準(zhǔn)是起步價(jià)10元,每千米1.2元;另一種出租車收費(fèi)標(biāo)準(zhǔn)是起步價(jià)8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理?xiàng)l例,車型不同,起步價(jià)可以不同,但起步價(jià)的最大行駛里程是相同的,且此里程內(nèi)只收起步價(jià)而不管其行駛里程是多少) 。˙級(jí)) 1.(全國(guó)初中數(shù)學(xué)競(jìng)賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺(tái)抽水機(jī)抽水,40min可抽完;如果用4臺(tái)抽水機(jī)抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機(jī) 臺(tái). 2.(希望杯)有一批影碟機(jī)(VCD)原售價(jià):800元/臺(tái).甲商場(chǎng)用如下辦法促銷: 購(gòu)買臺(tái)數(shù)1~5臺(tái)6~10臺(tái)11~15臺(tái)16~20臺(tái)20臺(tái)以上 每臺(tái)價(jià)格760元720元680元640元600元 乙商場(chǎng)用如下辦法促銷:每次購(gòu)買1~8臺(tái),每臺(tái)打九折;每次購(gòu)買9~16臺(tái),每臺(tái)打八五折; 每次購(gòu)買17~24臺(tái),每臺(tái)打八折;每次購(gòu)買24臺(tái)以上,每臺(tái)打七五折. (1)請(qǐng)仿照甲商場(chǎng)的促銷列表,列出到乙商場(chǎng)購(gòu)買VCD的購(gòu)買臺(tái)數(shù)與每臺(tái)價(jià)格的對(duì)照表; (2)現(xiàn)在有A、B、C三個(gè)單位,且單位要買10臺(tái)VCD,B單位要買16臺(tái)VCD,C單位要買20臺(tái)VCD,問他們到哪家商場(chǎng)購(gòu)買花費(fèi)較少? 3.(河北創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請(qǐng)你據(jù)此設(shè)計(jì)兌換方案. 4.從自動(dòng)扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運(yùn)動(dòng)且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的兩倍,已知男孩走了27級(jí)到達(dá)扶梯頂部,而女孩走了18級(jí)到達(dá)扶梯頂部(設(shè)男孩、女孩每次只踏—級(jí)).問: (1)扶梯露在外面的部分有多少級(jí)? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級(jí)數(shù)和扶梯的級(jí)數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時(shí)走了多少級(jí)臺(tái)階? 5.某化肥廠庫(kù)存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競(jìng)賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場(chǎng),這5塊麥田生產(chǎn)的麥子都在此打場(chǎng).問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運(yùn)輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對(duì)角線 j.Co M 第十四講 多邊形的邊角與對(duì)角線 邊、角、對(duì)角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對(duì)角線條數(shù)是解與多邊形相關(guān)的基本問題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識(shí). 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個(gè)常數(shù),把內(nèi)角問題轉(zhuǎn)化為外角問題,以靜制動(dòng)是解多邊形有關(guān)問題的常用技巧. 將多邊形問題轉(zhuǎn)化為三角形問題來處理是解多邊形問題的基本策略,連對(duì)角線或向外補(bǔ)形、對(duì)內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個(gè)頂點(diǎn)引出的對(duì)角線把 凸 邊形分成 個(gè)多角形,凸n邊形一共可引出 對(duì)角線. 例題求解 【例1】在一個(gè)多邊形中,除了兩個(gè)內(nèi)角外,其余內(nèi)角之和為20xx°,則這個(gè)多邊形的邊數(shù)是 . (江蘇省競(jìng)賽題) 思路點(diǎn)撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬(wàn)事萬(wàn)物是一個(gè)不斷地聚合和分裂的過程,點(diǎn)是幾何學(xué)最原始的概念,點(diǎn)生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內(nèi)角中,銳角的個(gè)數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國(guó)初中數(shù)學(xué)競(jìng)賽題) 思路點(diǎn)撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個(gè)數(shù)討論轉(zhuǎn)化為 外角為鈍角的個(gè)數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標(biāo)出圖中直角),并分別寫出所拼四邊形的對(duì)角線的長(zhǎng). (烏魯木齊市中考題) 思路點(diǎn)撥 把動(dòng)手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對(duì)角線有不同情形. 注 教學(xué)建模是當(dāng)今教學(xué)教育、考試改革最熱門的一個(gè)話題,簡(jiǎn)單地說,“數(shù)學(xué)建模”就是通過數(shù)學(xué)化(引元、畫圖等)把實(shí)際問題特化為一個(gè)數(shù)學(xué)問題,再運(yùn)用相應(yīng)的數(shù)學(xué)知識(shí)方法(模型)解決問題. 本例通過設(shè)元,把“沒有重疊、沒有空隙”轉(zhuǎn)譯成等式,通過不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形. (1)請(qǐng)根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點(diǎn)撥 本例主要研究?jī)蓚(gè)問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點(diǎn)接合的地方,n個(gè)內(nèi)角的和為360°,這樣,將問題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個(gè)單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個(gè)五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長(zhǎng)比五邊形ABCD正的周長(zhǎng)至少增加25個(gè)單位. (江蘇省競(jìng)賽題) 思路點(diǎn)撥 (1)5塊陰影部分要能拼成一個(gè)五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點(diǎn)分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長(zhǎng)等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長(zhǎng)逼近估算. 1.如圖,用硬紙片剪一個(gè)長(zhǎng)為16cm、寬為12cm的長(zhǎng)方形,再沿對(duì)角線把它分成兩個(gè)三角形,用這兩個(gè)三角形可拼出各種三角形和四邊形來,其中周長(zhǎng)最大的是 ?,周長(zhǎng)最小的是 cm. (選6《莢國(guó)中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個(gè)圖案: (1)第4個(gè)圖案中有白色地面磚 塊; (2)第n個(gè)圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個(gè)內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請(qǐng)賽試題) 6.一個(gè)凸多邊 形的每一內(nèi)角都等于140°,那么,從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個(gè)邊長(zhǎng)為4m的正六邊形客廳,用邊長(zhǎng)為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請(qǐng)賽試題) 8.已知△ABC是邊長(zhǎng)為2的等邊三角形,△ACD是一個(gè)含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個(gè)凸四邊形ABCD. 。1))畫出四邊形ABCD; (2)求出四邊形ABCD的對(duì)角線BD的長(zhǎng). (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競(jìng)賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對(duì)邊A3A4的中點(diǎn),連結(jié)A1B1,我們稱A1B1是這個(gè)五邊形的一條中對(duì)線,如果五邊形的每條中對(duì)線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對(duì)角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個(gè);∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競(jìng)賽題) 12.如圖,延長(zhǎng)凸五邊形A1A2A3A4A5的各邊相交得到5個(gè)角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長(zhǎng)凸n邊形(n≥5)的各邊相交,則得到的n個(gè)角的和等于 . ( “希望杯”邀請(qǐng)賽試題) 13.設(shè)有一個(gè)邊長(zhǎng)為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復(fù)上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復(fù)上述過程,所得到的圖形記作A4,那么,A4的周長(zhǎng)是 ;A4這個(gè)多邊形的面積是原三角形面積的 倍. (全國(guó)初中數(shù)學(xué)聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競(jìng)賽題) 15.在一個(gè)n邊形中,除了一個(gè)內(nèi)角外,其余(n一1)個(gè)內(nèi)角的和為2750°,則這個(gè)內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長(zhǎng)為( ) A.4 B.4 C.3 D. 3 (江蘇省競(jìng)賽題) 注 按題中的方法'不斷地做下去,就會(huì)成為下圖那樣的圖形,它的邊界有一個(gè)美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學(xué)家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學(xué)現(xiàn)象都導(dǎo)致分形,分形是新興學(xué)科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競(jìng)賽題) 18.平面上有A、B,C、D四點(diǎn),其中任何三點(diǎn)都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個(gè)三角形的內(nèi)角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長(zhǎng)都是整數(shù),求n. (上海市競(jìng)賽題) 20.如圖,凸八邊形ABCDEFGH的8 個(gè)內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長(zhǎng)分別為7,4,2,5,6,2,求該八邊形的周長(zhǎng). 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點(diǎn)都是活動(dòng)的),活動(dòng)床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計(jì)而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長(zhǎng)時(shí),才能實(shí)現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個(gè)凸n邊形由若干個(gè)邊長(zhǎng)為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個(gè)內(nèi)角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學(xué)家亞格龍將幾何學(xué)定義為:幾何學(xué)是研究幾何圖形在運(yùn)動(dòng)中不變的那些性質(zhì)的學(xué)科. 幾何變換是指把一個(gè)幾何圖形Fl變換成另一個(gè)幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見的合同變換. 如圖1,若把平面圖形Fl上的各點(diǎn)按一定方向移動(dòng)一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等. 如圖2,若把平面圖Fl繞一定點(diǎn)旋轉(zhuǎn)一個(gè)角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點(diǎn)叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等. 通過平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問題的條件相對(duì)集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內(nèi)一點(diǎn),PA:PB:PC=1:2:3,則∠APD= . 思路點(diǎn)撥 通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個(gè)三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點(diǎn)M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長(zhǎng)的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點(diǎn)撥 把△ACN繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個(gè)與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實(shí)施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點(diǎn),將圖形繞中點(diǎn)旋轉(zhuǎn)180°,構(gòu)造中心對(duì)稱全等三角形; (3)圖形中出現(xiàn)有公共端點(diǎn)的線段,將含有相等線段的圖形繞公共端點(diǎn),旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對(duì)邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學(xué)奧林匹克競(jìng)賽題) 思路點(diǎn)撥 設(shè)法將復(fù)雜的條件BC?FF=ED?AB=AF?CD>0用一個(gè)基本圖形表示,題設(shè)中有平行條件,可考慮實(shí)施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當(dāng)?shù)奈恢,使分散的條件相對(duì)集中,促使問題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點(diǎn)E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競(jìng)賽題) 思路點(diǎn)撥 本例實(shí)際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個(gè)三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識(shí): (1)兩點(diǎn)間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個(gè)三角形中大邊對(duì)大角(大角對(duì)大邊),三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角. 【例5】 如圖,等邊△ABC的邊長(zhǎng)為 ,點(diǎn)P是△ABC內(nèi)的一點(diǎn),且PA2+PB2=PC2,若PC=5,求PA、PB的長(zhǎng). (“希望杯”邀請(qǐng)賽試題) 思路點(diǎn)撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過旋轉(zhuǎn)變換使其集中到一個(gè)三角形中,這是解本例的關(guān) 鍵. 學(xué)歷訓(xùn)練 1.如圖,P是正方形ABCD內(nèi)一點(diǎn),現(xiàn)將△ABP繞點(diǎn)B顧時(shí)針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點(diǎn),PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長(zhǎng)為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動(dòng)的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)C、F,給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個(gè) B.2個(gè) C .3個(gè) D.4個(gè) (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長(zhǎng)為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長(zhǎng)分別為 和 ,對(duì)角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長(zhǎng)叫做兩個(gè)正方形的中心距,當(dāng)中心O2在直線 上平移時(shí),正方形EFGH也隨之平移,在平移時(shí)正方形EFGH的形狀、大小沒有變化. (1)計(jì)算:O1D= ,O2F= ; (2)當(dāng)中心O2在直線 上平移到兩個(gè)正方形只有一個(gè)公共點(diǎn)時(shí),中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個(gè)正方形的公共點(diǎn)的個(gè)數(shù)還有哪些變化?并求出相對(duì)應(yīng)的中心距的值或取值范圍(不必寫出計(jì)算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個(gè)矩形的水平方向的邊長(zhǎng)均為a,豎直 方向的邊長(zhǎng)均為b): 在圖a中,將線段A1A2向右平移1個(gè)單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個(gè)單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); (1)在圖c中,請(qǐng)你類似地畫一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位,從而得到一個(gè)封閉圖形,并用斜線畫出陰影; 。2)請(qǐng)你分別寫出上述三個(gè)圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; 。3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個(gè)單位),請(qǐng)你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊(cè)幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由. (3)在①得到的圖形中,設(shè)MA的延長(zhǎng)線與BN相交于D點(diǎn),請(qǐng)你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點(diǎn)3cm的點(diǎn)P為中心,把這個(gè)三角形按逆時(shí)針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點(diǎn)E在DC上,AE、BC的延長(zhǎng)線交于點(diǎn)F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點(diǎn),則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點(diǎn)A、B的距離分別為2、3,則PC所能達(dá)到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點(diǎn),E為AC 延長(zhǎng)線上一點(diǎn),BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點(diǎn),PA、PB、PC的長(zhǎng)為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實(shí)數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學(xué)建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點(diǎn)水平距離(與小河平行方向)120米,為使A、B兩點(diǎn)間來往路程最短,兩座橋都按這個(gè)目標(biāo)而建,那么,此時(shí)A、D兩點(diǎn)間來往的路程是多少米? (“五羊杯”競(jìng)賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點(diǎn),點(diǎn)O到△ABC各邊的距離都等于1,將△ABC繞 點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競(jìng)賽題) 18.(1)操作與證明:如圖1,O是邊長(zhǎng)為a的正方形ACBD的中心,將一塊半徑足夠長(zhǎng),圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長(zhǎng)度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正三角形或正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn), 當(dāng)扇形紙板的圓心角為 時(shí),正三角形的邊被紙板覆蓋部分的總長(zhǎng)度為定值a;當(dāng)扇形紙板的圓心角為 時(shí),正五邊形的邊被紙板覆蓋部分的總長(zhǎng)度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為 時(shí),正n邊形的邊被紙板覆蓋部分 的總長(zhǎng)度為定值a;這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系;若不是定值,請(qǐng)說明理由. 【平行四邊形教案】相關(guān)文章: 平行四邊形教案08-27 平行四邊形的認(rèn)識(shí)教案07-30 《平行四邊形的面積》教案01-02 平行四邊形面積教案02-09 《平行四邊形的面積》教案06-23 平行四邊形的面積教案01-17 精選平行四邊形教案八篇08-01 精選平行四邊形教案7篇09-27