国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

《有理數(shù)的加法》教案

時間:2024-10-29 13:22:09 晶敏 教案 我要投稿

《有理數(shù)的加法》教案(通用20篇)

  作為一位無私奉獻的人民教師,常常需要準(zhǔn)備教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那要怎么寫好教案呢?下面是小編整理的《有理數(shù)的加法》教案,僅供參考,希望能夠幫助到大家。

《有理數(shù)的加法》教案(通用20篇)

  《有理數(shù)的加法》教案 1

  教學(xué)目標(biāo):

  1、知識與技能:理解有理數(shù)加法的運算律,能熟練地運用運算律簡化有理數(shù)加法的運算,能靈活運用有理數(shù)的加法解決簡單實際問題。

  2、過程與方法:經(jīng)過有理數(shù)加法運算律的探索過程,了解加法的運算律,能用運算律簡化運算。

  重點、難點:

  1、重點:運算律的理解及合理、靈活的運用。

  2、難點:合理運用運算律。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景,導(dǎo)入新課

  1、敘述有理數(shù)的加法法則。

  2、有理數(shù)加法與小學(xué)里學(xué)過的數(shù)的加法有什么區(qū)別和聯(lián)系?

  答:進行有理數(shù)加法運算,先要根據(jù)具體情況正確地選用法則,確定和的符號,這與小學(xué)里學(xué)過的數(shù)的加法是不同的;而計算和的絕對值,用的`是小學(xué)里學(xué)過的加法或減法運算。

  二、合作交流,解讀探究

  1、計算下列各題,并說明是根據(jù)哪一條運算法則?

  (1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)

  2、計算下列各題:

  (1) +(-4); (2) 8+;

  (3) +(-11); (4) (-7)+;

  (5) +(+27); (6) (-22)+.

  通過上面練習(xí),引導(dǎo)學(xué)生得出:

  交換律兩個有理數(shù)相加,交換加數(shù)的位置,和不變。

  用代數(shù)式表示上面一段話:

  a+b=b+a

  運算律式子中的字母a,b表示任意的一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零.在同一個式子中,同一個字母表示同一個數(shù)。

  結(jié)合律三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.

  用代數(shù)式表示上面一段話:

  (a+b)+c=a+(b+c)

  這里a,b,c表示任意三個有理數(shù)。

  根據(jù)加法交換律和結(jié)合律可以推出:三個以上的有理數(shù)相加,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)相加。

  三、應(yīng)用遷移,鞏固提高

  例(P22例3)計算:

  (1) 33+(-2)+7+(-8)

  (2) 4.375+(-82)+( -4.375)

  引導(dǎo)學(xué)生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結(jié)合在一起再相加,有相反數(shù)的先把相反數(shù)相加;能湊整的先湊整;有分母相同的,先把同分母的數(shù)相加,計算就比較簡便。

  本例先由學(xué)生在筆記本上解答,然后教師根據(jù)學(xué)生解答情況指定幾名學(xué)生板演,并引導(dǎo)學(xué)生發(fā)現(xiàn),簡化加法運算一般是三種方法:首先消去互為相反數(shù)的兩數(shù)(其和為0),同號結(jié)合或湊整數(shù)。

  例2(P23例4)

  教師通過啟發(fā),由學(xué)生列出算式,再讓學(xué)生思考,如何應(yīng)用運算律,使計算簡便。第一問可以讓學(xué)生自已作行程示意圖幫助理解,注意第一問和第二問的區(qū)別。

  練習(xí)課本P.23練習(xí):1、2

  四、總結(jié)反思

  本節(jié)課你有哪些收獲?

  五、作業(yè)

  1、課本P27習(xí)題1.4A組第3、4題

  2、課本P28習(xí)題1.4B組第12題

  《有理數(shù)的加法》教案 2

  教學(xué)目標(biāo):

  1通過學(xué)生身邊可以嘗試、探索的場景,經(jīng)歷有理數(shù)加法法則得出的過程,理解有理數(shù)加法法則的合理性。2能進行簡單的有理數(shù)加法運算。3發(fā)展觀察、歸納、猜測驗證等能力。

  重點難點:

  重點:有理數(shù)加法法則的得出,和的符號的確定;難點:異號兩數(shù)相加

  教學(xué)過程

  一激情引趣,導(dǎo)入新課

  1我們早知道正有理數(shù)和零可以做加法運算,所有的有理數(shù)是否都可以進行加法運算呢?這就是我們這節(jié)課要研究的問題,先來分析一下,所有的有理數(shù)相加的時候有哪些情況呢?請你想一想

  2從前有一個文盲記錄家里的收入和支出的時候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個月他發(fā)現(xiàn)記賬的盒子里有10顆紅豆6顆黑豆,他發(fā)現(xiàn)紅豆比黑豆多了4顆,于是他不僅知道了這個月結(jié)余了4文錢還知道了自己這個月的收入和支出情況。我們可以用一個圖形來表示他這種記賬方式!啊稹保啊瘛狈謩e表紅豆和黑豆。

  ,這個圖形其實就是一個有理數(shù)的加法算式:(+10)+(-6)=+4下面我們借助數(shù)軸來理解有理數(shù)的加法運算。

  二合作交流,探究新知

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向,一個單位代表1千米

  1同號兩數(shù)相加

  小亮從O點出發(fā),先向西移動2個千米休息一會兒,再向西移動3個千米,兩次走路的'總效果等于從點O出發(fā)向_____走了_______千米,用式子表示為_______________.

  從上,你發(fā)現(xiàn)了嗎,同號兩數(shù)相加結(jié)果的符號怎么確定?結(jié)果的絕對值怎么確定?請把你的發(fā)現(xiàn)填在下面的框里。

  同號兩數(shù)相加,取__________的符號,并把它們的_____________相加。

  2異號兩數(shù)相加

  (1)小明先從點O出發(fā),先向東走4千米,發(fā)現(xiàn)口袋里的鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點O出發(fā)向___走了____千米,用式子表示為_________________________.

  (2)小李先從點O出發(fā),先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達家中,小李兩次走路的總效果等于等于吃哦從點O出發(fā),向___走了

  _____千米。用式子表達為_______________________.

  從上面例子,你發(fā)現(xiàn)了異號兩數(shù)怎么做嗎?把你的結(jié)論填在下框中。

  異號兩數(shù)相加,絕對值不相等時,取__________________的符號,并用_________的絕對值

  減去_______________的絕對值。

  3一個數(shù)和零相加,以及互為相反數(shù)相加

  (1)某個人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?

  (2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?

  從上問題,你發(fā)現(xiàn)了什么?把你的結(jié)論寫在下框中,

  互為相反數(shù)的兩個相加得_______,一個數(shù)和零相加,任得____________________.

  三應(yīng)用遷移,拓展提高

  例1計算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

  (3)(-5)+9(4)(–10)+7

  例2計算(1)(-3)+(2)(-)+(-)

  例3填空

  (1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

  四課堂練習(xí),鞏固提高

  P21

  五反思小結(jié)鞏固提高

  有理數(shù)的加法法則有哪些?請你把它們寫在下面:

  1

  2

  3

  4

  六作業(yè)p24-25A組1-4B1

  《有理數(shù)的加法》教案 3

  教學(xué)目標(biāo)

  1.了解有理數(shù)加法的意義,理解有理數(shù)加法法則的合理性;

  2.能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算;

  3.經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學(xué)學(xué)習(xí)的方法;

  4.通過積極參與探究性的數(shù)學(xué)活動,體驗數(shù)學(xué)來源于實踐并為實踐服務(wù)的思想,激發(fā)學(xué)生的學(xué)習(xí)興趣,同時培養(yǎng)學(xué)生探究性學(xué)習(xí)的能力.

  教學(xué)重點

  能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算.

  教學(xué)難點

  經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學(xué)學(xué)習(xí)的方法.

  教學(xué)過程(教師)

  一、創(chuàng)設(shè)情境

  小學(xué)里,我們學(xué)過加法和減法運算,引進負數(shù)后,怎樣進行有理數(shù)的加法和減法運算呢?

  1.試一試

  甲、乙兩隊進行足球比賽.如果甲隊在主場贏了3球,在客場輸了2球,那么兩場比賽后甲隊凈勝1球.

  你能把上面比賽的過程及結(jié)果用有理數(shù)的算式表示出來嗎?

  做一做:比賽中勝負難料,兩場比賽的結(jié)果還可能有哪些情況呢?動動手填表:

  2.我們知道,求兩次輸贏的總結(jié)果,可以用加法來解答,請同學(xué)們先個人研究,后小組交流.

  你還能舉出一些應(yīng)用有理數(shù)加法的實際例子嗎?

  二、探究歸納

  1.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動5個單位長度,再向右移動3個單位長度,這時筆尖停在“”的位置上.

  用數(shù)軸和算式可以將以上過程及結(jié)果分別表示為:

  算式:________________________

  2.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向右移動3個單位長度,再向左移動2個單位長度,這時筆尖停在“1”的.位置上.

  用數(shù)軸和算式可以將以上過程及結(jié)果分別表示為:

  算式:________________________

  3.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動3個單位長度,再向左移動2個單位長度,這時筆尖的位置表示什么數(shù)?

  請用數(shù)軸和算式分別表示以上過程及結(jié)果:

  算式:________________________

  仿照上面的做法,請在數(shù)軸上呈現(xiàn)下面的算式所表示的筆尖運動的過程和結(jié)果.

  4.觀察、思考、討論、交流并得出有理數(shù)加法法則.

  討論:兩個有理數(shù)相加時,和的符號及絕對值怎樣確定?你能找到有理數(shù)相加的一般方法嗎?

  《2.5有理數(shù)的加法與減法》課時練習(xí)

  1.七年級(3)班同學(xué)李亮在一次班級運動會上參加三級跳遠比賽,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最遠?成績是多少?

  2.一只小蟲從某點P出發(fā),在一條直線上來回爬行,假定把向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬行各段路程(單位:厘米)依次為:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

  (1)通過計算說明小蟲是否回到起點P.

  (2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間.

  2.5有理數(shù)的加法與減法:同步練習(xí)

  1.高速公路養(yǎng)護小組,乘車沿東西向公路巡視維護,如果約定向東為正,向西為負,當(dāng)天的行駛記錄如下(單位:km)

  +17,-9,+7,-15,-3,+11,-6,-8,+5,+16

  (1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

  (2)養(yǎng)護過程中,最遠外離出發(fā)點有多遠?

  (3)若汽車耗油量為0.09升/km,則這次養(yǎng)護共耗油多少升?

  《有理數(shù)的加法》教案 4

  教學(xué)目標(biāo)

  1,在現(xiàn)實背景中理解有理數(shù)加法的意義。

  2,經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。

  3,能積極地參與探究有理數(shù)加法法則的活動,并學(xué)會與他人交流合作。

  4,能較為熟練地進行有理數(shù)的加法運算,并能解決簡單的實際間題。

  5,在教學(xué)中適當(dāng)滲透分類討論思想

  教學(xué)難點

  異號兩數(shù)相加

  知識重點

  和的符號的確定

  教學(xué)過程

 。◣熒顒樱┰O(shè)計理念

  設(shè)置情境

  引入課題回顧用正負數(shù)表示數(shù)量的實際例子;

  在足球比賽中,如果把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。若紅隊進4個球,失2個球,則紅隊的勝球數(shù),可以怎樣表示?藍隊的勝球數(shù)呢?

  師:如何進行類似的有理數(shù)的加法運算呢?這就是我們這節(jié)課一起與大家探討的問題。

 。ǔ鍪菊n題)讓學(xué)生感受到在實際問題中做加法運算的數(shù)可能超出正數(shù)的范圍,體會學(xué)習(xí)有理數(shù)加法的必要性,激發(fā)學(xué)生探究新知的興趣。

  分析問題

  探究新知如果是球隊在某場比賽中上半場失了兩個球,下

  半場失了3個球,那么它的得勝球是幾個呢?算式應(yīng)該

  怎么列?若這支球隊上半場進了2個球,下半場失了3個球,又如何列出算式,求它的得勝球呢?

  (學(xué)生思考回答)

  思考:請同學(xué)們想想,這支球隊在這場比賽中還可

  能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。

  學(xué)生相互交流后,教師進一步引導(dǎo)學(xué)生可以把兩個有理數(shù)相加歸納為同號兩數(shù)相加、異號兩數(shù)相加、一個數(shù)同零相加這三種情況。

  2,借助數(shù)軸來討論有理數(shù)的加法。I

  一個物體向左右方向運動,我們規(guī)定向左運動為負,向右為正,向右運動5m,記作5m,向左運動5m,記作—5m。

 。1)(小組合作)把我們已經(jīng)得出的幾種有理數(shù)相加的情況在數(shù)軸上用運動的方向表示出來,并求出結(jié)果,解釋它的意義。

 。2)交流匯報。(對學(xué)習(xí)小組的匯報結(jié)果,數(shù)軸用實物投影儀展示,算式由教師寫在黑板上)

 。3)說一說有理數(shù)相加應(yīng)注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?

  (4)在學(xué)生歸納的基礎(chǔ)上,教師出示有理數(shù)加法法則。

  有理數(shù)加法法則:

  1,同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2,絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。

  3,一個數(shù)同。相加,仍得這個數(shù)。再次創(chuàng)設(shè)足球比賽情境,一方面與引題相呼應(yīng),聯(lián)系密切,另一方面讓學(xué)生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。

  估計學(xué)生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它歸的為同號異號等三類,所以此處需教師。點拔、指扎,體現(xiàn)教師的引導(dǎo)者作用。

 、偌僭O(shè)原點0為第一次運動起點,第二次運動的起點是第一次運動的終點。②若學(xué)生在學(xué)習(xí)小組內(nèi)不能很好地參與探究,也可以讓其參照教科書第21頁的“探究”自主進行。③讓學(xué)生感受“數(shù)學(xué)模型”的思想。④學(xué)會與同伴交流,并在交流中獲益。培養(yǎng)學(xué)生的語言表達能力和歸納能力,也許學(xué)生說得不夠嚴謹,但這并不重要,重要的足能用自己的語言表達自己所發(fā)現(xiàn)的規(guī)律

  解決問題解決問題

  例1計算:

 。1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4.7)+3.9。

  教師板演,讓學(xué)生說出每一步運算所依據(jù)的法則。

  請同學(xué)們比較,有理數(shù)的加法運算與小學(xué)時候?qū)W的加法有什么異同?(如:有理數(shù)加法計算中要注意符號,和不一定大于加數(shù)等等)

  例2足球循環(huán)賽中,紅隊4:1勝黃隊,黃隊1:0勝藍隊藍隊1:0勝紅隊,計算各隊的凈勝球數(shù)。

  (讓學(xué)生讀數(shù),理解題意,思考解決方案,然后由學(xué)生口述,教師板書)

  學(xué)生活動:請學(xué)生說一說在生活中用到有理數(shù)加法的.例子。注意點:(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現(xiàn)過程,并要求學(xué)生在剛開始學(xué)的時候要把中間的過

  程寫完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學(xué)生能較為熟練地運用法則進行計算。

  拓寬學(xué)生視野,讓學(xué)

  生體會到數(shù)學(xué)與生活的密切聯(lián)系。

  課堂練習(xí)教科書第23頁練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié)通過這節(jié)課的學(xué)習(xí),你有哪些收獲,學(xué)生自己總結(jié)。

  本課作業(yè)必做題:閱讀教科書第20~22頁,教科書第31習(xí)題1.3第1、12、第13題。

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

  1,在本節(jié)課的設(shè)計中,注重引導(dǎo)學(xué)生參與探究、歸納(用自己的語言敘迷)有理數(shù)加法法則的過程。

  2,注意滲透數(shù)學(xué)思想方法。數(shù)學(xué)思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學(xué)生理解、掌握,所以,本節(jié)課在這一方面主要是讓學(xué)生感知研究數(shù)學(xué)問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時,有意識地把各種情況先分為三類(同號、異號,一個數(shù)同0相加);在運用法則時,當(dāng)和的符號確定以后,有理數(shù)的加法就轉(zhuǎn)化為算術(shù)的加減法。

  3,注意學(xué)生合作學(xué)習(xí)的學(xué)習(xí)方式,讓學(xué)生在與他人合作中受益,學(xué)會交流,學(xué)會傾聽

  別人的意見和建議。

  附板書:1.3.1有理數(shù)的加法(一)

  《有理數(shù)的加法》教案 5

  學(xué)習(xí)過程:

  一、自主學(xué)習(xí)不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:

  1.小學(xué)學(xué)過的加法運算律有哪些?舉例說明運用運算律有何好處?

  2.加法的交換律:

  兩個數(shù)相加,交換xx的位置,和不變.用式子表示:a+b=。

  3.加法的結(jié)合律:

  《1.3.1有理數(shù)的加法》同步練習(xí)含答案

  在進行兩個異號有理數(shù)的加法運算時,其計算步驟如下:

  ①將絕對值較大的有理數(shù)的.符號作為結(jié)果的符號并記住;

 、趯⒂涀〉姆柡徒^對值的差一起作為最終的計算結(jié)果;

 、塾幂^大的絕對值減去較小的絕對值;

  ④求兩個有理數(shù)的絕對值;⑤比較兩個絕對值的大小.其中操作順序正確的是( )

  A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②

  《1.3.1有理數(shù)的加法》同步練習(xí)題(含答案)

  10.小蟲從某點A出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。

  (1)小蟲最后是否回到出發(fā)點A?

  (2)在爬行過程中,如果每爬行1cm獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?

  解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,

  所以小蟲最后回到出發(fā)點A。

  (2)小蟲爬行的總路程為|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。

  所以小蟲一共得到54粒芝麻。

  《有理數(shù)的加法》教案 6

  教學(xué)目標(biāo):

  1. 知識與技能:使學(xué)生理解加減法統(tǒng)一成加法的意義,能準(zhǔn)確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,

  2. 過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應(yīng)用

  3. 情感、態(tài)度與價值觀:滲透用轉(zhuǎn)化的思想看問題以及解決問題,鼓勵學(xué)生依據(jù)法則簡化運算

  教學(xué)重點:能準(zhǔn)確、熟練地進行加減混合運算,能自覺地運用加法的.運算律簡化運算,

  教學(xué)難點:準(zhǔn)確、熟練地進行加減混合運算

  教學(xué)過程

  一、課前預(yù)習(xí)

  1、有理數(shù)的加法法則是什么? 2、有理數(shù)的減法法則是什么? 3、有理數(shù)的加法有什么運算律?具體內(nèi)容是什么? 4、計算下列各題 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  根據(jù)有理數(shù)減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為加法運算

  例1、計算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統(tǒng)一為加法 = 26+(-42)---------------------------------------運用運算律 =-16 (2) (3)(4) (5)

  算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的加減混合運算,我們還可以按下列步驟進行計算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號 =-6+13-5-3+6----------------------------------------省略加號 =-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5 說明: 省略加號的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6這五個數(shù)的和。

  例2.計算:

  (1) -3-5+4 (2)-26+43-24+13-46

  解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 數(shù)據(jù)代入時,注意括號的運用]

  (2) (3)(4)

  例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查, 約定向東為正,某天從A地到B地結(jié)束時行走記錄為(單位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 問:(1)B地在A地何方,相距多少千米?

  (2)這小組這一天共走了多少千米

  三、學(xué)習(xí)小結(jié)

  這節(jié)課你學(xué)會了哪幾種運算?

  四、隨堂練習(xí)

  A類

  1、計算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2 計算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B類

  3. 計算 (1) + + ++ (2) + + ++

  《有理數(shù)的加法》教案 7

  師:在小學(xué)里,同學(xué)們已經(jīng)學(xué)過數(shù)的加、減、乘、除四則運算。這些數(shù)是正整數(shù)、正分數(shù)、和零,也就是說,這些運算是在非負有理數(shù)范圍內(nèi)進行的。自從引進負數(shù)后,數(shù)的范圍就擴大到整個有理數(shù)。那么,在有理數(shù)范圍內(nèi),怎樣進行四則運算呢?今天,我們來探索有理數(shù)的加法運算。(教師板書課題:有理數(shù)的加法)

  請同學(xué)們思考一下,兩個有理數(shù)進行加法運算時,這兩個加數(shù)的符號可能有哪些情況。

  生1:加數(shù)都是正數(shù)或都是負數(shù)。(教師板書:同號兩數(shù)相加)加數(shù)一正一負(教師板書:異號兩數(shù)相加)

  師:還有其他情況嗎?

  生2:正數(shù)與零,負數(shù)與零,或者兩個都是零

  師:同學(xué)們回答得很好,F(xiàn)在讓我們一起來看一個具體問題:某人從一點出發(fā),經(jīng)過下面兩次運動,結(jié)果的方向怎樣?離開出發(fā)點的距離是多少?①先向東走了5米,再向東走3米,結(jié)果怎樣?

  生3:向東走了8米

  師:如果規(guī)定向東為正,向西為負,同學(xué)們能不能用一個數(shù)學(xué)式子來表示?生4:表示為(+5)+(+3)=+8(教師板書)師:我們可以畫出示意圖。(教師用投影儀顯示圖1)

  ②先向西走了5米,再向西走了3米,結(jié)果如何?

  生5:向西走了8米?梢员硎緸椋海ǎ担ǎ常剑竅教師板書]

 。ń處熡猛队皟x顯示圖2)

 、巯驏|走了5米,再向西走了3米,結(jié)果呢?

  生6:向東走了2米。可以表示為:(+5)+(-3)=+2[教師板

 。ń處熡猛队皟x顯示圖3)

 、芟认蛭髯吡耍得,再向東走了3米,結(jié)果呢?

  生7:向西走了2米?梢员硎緸椋海ǎ担ǎ常剑玻ń處煱澹ń處熡猛队皟x顯示圖4)

  ⑤先向東走5米,再向西走5米,結(jié)果呢?

  生8:回到原地位置。可以表示為:(+5)+(-5)=0(教師板書)(教師用投影儀顯示圖5)

 、尴认蛭髯撸得,再向東走5米,結(jié)果呢?

  生9:仍回到原地位置?梢员硎緸椋海ǎ担ǎ担剑癧教師板書]

 。ń處熡猛队皟x顯示圖6)

  師:同學(xué)們開動腦筋,完成上面這組問題完成得非常好,我非常高興,請同學(xué)們獨立完成下面一組有理數(shù)加法的具體問題,用數(shù)學(xué)式子表示出來。(教師用投影儀顯示下面內(nèi)容):

  從河岸現(xiàn)在水位線開始,規(guī)定上升為正,下降為負:

  ①上升8cm,再上升6cm,結(jié)果怎樣?②下降8cm,再下降6cm,結(jié)果怎樣?

 、凵仙禼m,再下降8cm,結(jié)果怎樣?④下降6cm,再上升8cm,結(jié)果怎

 、萆仙竎m,再下降8cm,結(jié)果怎樣?⑥下降8cm,再上升0cm,結(jié)果怎樣?

  師:下面同學(xué)們分組討論,互相訂正。

  教師公布正確答案:

 、偕仙保碿m。 [教師板書(+8)+(+6)=+14]

 、谙陆担保碿m。 [教師板書(-8)+(-6)=-14]

 、巯陆担瞔m。 [教師板書(+6)+(-8)=-2]

 、苌仙瞔m。 [教師板書(-6)+(+8)=+2]

 、莼氐皆痪。 [教師板書(+8)+(-8)=0]

 、拊谠幌戮下8cm。 [教師板書(-8)+0=-8]

  師:通過以上兩組題目,從兩個有理數(shù)相加的過程中你發(fā)現(xiàn)了什么?請同學(xué)們發(fā)表演自己的觀點,與本組同學(xué)交流。

  小組1:我們這一小組同學(xué)發(fā)現(xiàn)了正數(shù)加正數(shù)結(jié)果是正數(shù),負數(shù)加負數(shù)結(jié)果是負數(shù),也就是說:同號兩數(shù)相加,符號不變。

  師:其他小組還有沒有新的發(fā)現(xiàn)什么?

  小組2:我們發(fā)現(xiàn)符號不同的兩個有理數(shù)相加,結(jié)果的符號與最前面加數(shù)的符號一樣。

  師:這一小組的看法是否正確呢?

  小組3:不正確。因為(+6)+(-8)=-2,(-6)+(+8)=+2,結(jié)果和符號與第一個加數(shù)的符號不一樣。應(yīng)改為:符號不同的兩個有理數(shù)相加,結(jié)果的符號決定于加數(shù)中較大的數(shù)的符號。

  小組4:這句話也不對,如(+3)+(-5)=-2中,和的符號是負的,但+3比-5大,應(yīng)改為:和的符號與絕對值大的加數(shù)符號一樣。師:還有沒有不同意見?

  小組5:我們這一小組有不同意見。符號不同的兩個數(shù)相加還有一種可能是相反數(shù)的情況,結(jié)果為0與每個的數(shù)的符號都不一樣。

  師:觀察仔細,很好。

  師:剛才同學(xué)們只是發(fā)現(xiàn)了兩個有理數(shù)相加,結(jié)果的符號問題,結(jié)果除了

  符號部分外,另一部分稱為結(jié)果的什么?

  眾生:結(jié)果的絕對值

  師:結(jié)果的絕對值與加數(shù)絕對值又有何關(guān)系呢?

  小組5:同號兩數(shù)相加和的絕對值等于加數(shù)絕對值的和,異號兩數(shù)相加和的.絕對值等于較大絕對值減去較小絕對值。

  師:請同學(xué)歸納,總結(jié)出有理數(shù)的加法規(guī)律。

  小組6:同號兩數(shù)相加,符號不變,并把絕對值相加;異號兩數(shù)相加取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  小組7:不對,異號兩數(shù)相加應(yīng)分兩種情況。⑴絕對值不等的異號兩數(shù)相加;⑵絕對值相等的異號兩數(shù)相加。

  師:很好!同學(xué)們已經(jīng)感受到兩個有理數(shù)相加的情況與小學(xué)加法要復(fù)雜一些,是否還有沒有考慮到的情況呢?

  小組8:有,一個數(shù)同0相加,仍是這個數(shù)。

  師:全班同學(xué)共同說出有理數(shù)的加法法則。

  教(板書):有理數(shù)加法法則:

 、偻杻蓴(shù)相加,取加數(shù)的符號,并把絕對值相加;

 、诋愄杻蓴(shù)相加,如果絕對值相等和為0;如果絕對值不等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

  ③一個數(shù)同0相加,仍是這個數(shù)。

 。c評:學(xué)生學(xué)習(xí)知識是一個動態(tài)的過程。學(xué)生認知的效果,完全取決于學(xué)生是否以積極的心態(tài)參與認知活動。因此本節(jié)課在教學(xué)設(shè)計上有如下閃光點:

  1、通過回顧已具備的部分知識與技能,讓學(xué)生產(chǎn)生一個暫時成功感和滿足感,達到一個暫時的心理平衡。

  2、以提問的形式展現(xiàn)新矛盾、新問題,挑起學(xué)生引起心理的不平衡。旨在誘發(fā)學(xué)生好強、好勝的天性,將學(xué)生的注意力導(dǎo)向下一個環(huán)節(jié)。

  3、再次以提問的形式,滲透分類的思想,將學(xué)生的思維導(dǎo)向分類探索的境地。旨在讓學(xué)生的思維能圓潤地過度到探索新知情境之中。

  4、分類展示生活情境,放手讓全體學(xué)生感受并探索,從而構(gòu)建加法法則。)

  《有理數(shù)的加法》教案 8

  【教學(xué)目標(biāo)】

  1.理解有理數(shù)加法的實際意義;

  2.會作簡單的加法計算;

  3.感受到原來用減法算的問題現(xiàn)在也可以用加法算.

  【對話探索設(shè)計】

  〖探索1〗

  (1)某倉庫第一天運進300噸化肥,第二天又運進200噸化肥,兩天一共運進多少噸?

  (2)某倉庫第一天運進300噸化肥,第二天運出200噸化肥,兩天總的結(jié)果一共運進多少噸?

  (3)某倉庫第一天運進300噸化肥,第二天又運進-200噸化肥,兩天一共運進多少噸?

  (4)把第(3)題的算式列為300+(-200),有道理嗎?

  (5)某倉庫第一天運進a噸化肥,第二天又運進b噸化肥,兩天一共運進多少噸?

  〖探索2〗

  如果物體先向右運動,再向右運動,那么兩次運動后總的結(jié)果是什么?

  假設(shè)原點為運動起點,用下面的數(shù)軸檢驗?zāi)愕拇鸢?

  在足球比賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù).若某場比賽紅隊勝黃隊5:2(即紅隊進5個球,失2個球),紅隊凈勝幾個球?

  〖小游戲〗

  (請一位同學(xué)到黑板前)前進5步,又前進-3步,那么兩次運動后總的結(jié)果是什么?若是后退-1步,又后退3步呢?

  〖練習(xí)〗

  1.登山隊員第一天向上攀登,第二天又向上攀登(天氣惡劣!),兩天一共向上攀登多少米?

  2.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?

  〖補充作業(yè)〗

  1.分別用加法和減法的算式表示下面每小題的結(jié)果(能求出得數(shù)最好):

  (1)溫度由下降;(2)倉庫原有化肥200t,又運進-120t;

  (3)標(biāo)準(zhǔn)重量是,超過標(biāo)準(zhǔn)重量;(4)第一天盈利-300元,第二天盈利100元.

  2.借助數(shù)軸用加法計算:

  (1)前進,又前進,那么兩次運動后總的結(jié)果是什么?

  (2)上午8時的'氣溫是,下午5時的氣溫比上午8時下降,下午5時的氣溫是多少?

  3.某潛水員先潛入水下,他的位置記為.然后又上升,這時他處在什么位置?

  《有理數(shù)的加法》教案 9

  1.教學(xué)目標(biāo)

  1.1地位、作用

  在初中階段,要培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把實際問題轉(zhuǎn)化成數(shù)學(xué)問題的數(shù)學(xué)意識,增強學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的運算是初等數(shù)學(xué)的基本運算,掌握有理數(shù)的運算,是學(xué)好后續(xù)內(nèi)容的重要前提。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,也是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。

  1.2學(xué)情分析

  在初中數(shù)學(xué)教學(xué)中,非智力因素在認知過程中起十分重要的作用,而興趣在非智力因素中占有特殊的地位,它是學(xué)生學(xué)習(xí)自覺性和積極性的核心因素,是學(xué)習(xí)的強化劑。因此,從初一開始培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,是其學(xué)好數(shù)學(xué)的重要保障。圍繞這一點,在教學(xué)中要讓不同程度的學(xué)生都有體驗成功的機會,教學(xué)中教師為導(dǎo)、學(xué)生為主,充分認識初一學(xué)生這個年齡段的心理特征:好奇心強;好勝心強;抽象思維能力弱,過分依賴直觀;意志薄弱,缺乏毅力。

  另一方面,課本知識的傳授是符合學(xué)生的認知發(fā)展特點的。在前期段,學(xué)生已經(jīng)儲藏了兩個正數(shù)的加法,較大數(shù)減較小數(shù)的減法,引入了負數(shù),有必要再學(xué)習(xí)有理數(shù)的加法,然后過渡到有理數(shù)的其它運算,再到式的運算、方程、函數(shù)的運算;同時,負數(shù)、數(shù)軸、絕對值的學(xué)習(xí)又為這節(jié)課的學(xué)習(xí)方法奠定了基礎(chǔ)。

  1.3教學(xué)目標(biāo)

  根據(jù)本節(jié)所處的地位與作用,結(jié)合學(xué)生的具體學(xué)情,確定本節(jié)課的教學(xué)目標(biāo)如下:

  知識目標(biāo):通過將生活中的問題轉(zhuǎn)化為有理數(shù)加法的全過程,使學(xué)生直觀形象地理解有理數(shù)加法的意義,掌握有理數(shù)的加法法則,并能正確運用。

  能力目標(biāo):通過情境的設(shè)計,培養(yǎng)學(xué)生的探索創(chuàng)新精神。在學(xué)生學(xué)習(xí)的過程中,滲透分類思想、數(shù)形結(jié)合思想與及綜合、歸納、概括的能力。

  情感目標(biāo):通過教師引導(dǎo)下的探索,讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)的價值與樂趣。

  1.4教材處理

  根據(jù)本節(jié)教材的內(nèi)容,我把有理數(shù)的加法劃分為兩個課時,第一課時學(xué)習(xí)有理數(shù)的加法法則并能準(zhǔn)確進行兩個數(shù)的加法運算;第二節(jié)課學(xué)習(xí)有理數(shù)的加法運算律并能準(zhǔn)確進行多個數(shù)的加法運算。

  2.重點、難點

  2.1教學(xué)重點:有理數(shù)加法法則的理解與運用(而不是簡單地記憶法則)。

  2.2教學(xué)難點:異號兩數(shù)加法的實際意義及法則的歸納。

  3.教學(xué)方法與教學(xué)手段

  本課采用多媒體輔助教學(xué),從學(xué)生熟悉的人物出發(fā),激發(fā)學(xué)生探索欲;通過層層鋪墊,引導(dǎo)學(xué)生利用已學(xué)數(shù)學(xué)工具探索新知;在學(xué)生探索的基礎(chǔ)上,有意識地引導(dǎo)學(xué)生對多樣化的結(jié)果進行分類整理;在法則的提煉過程中,培養(yǎng)學(xué)生類比、歸納和概括的學(xué)習(xí)能力。

  在本節(jié)的設(shè)計過程中,利用了一道開放性習(xí)題引出課題,讓學(xué)生在研究中學(xué)習(xí),對學(xué)生進行能力培養(yǎng),充分跨越學(xué)生的最近發(fā)展區(qū)。

  4.教學(xué)過程:

  4.1創(chuàng)設(shè)情境,讓學(xué)生的思維“動”起來

  [生活情境]劉翔是世界男子青年錦標(biāo)賽110米欄的冠軍,是中國人的驕傲。從他的體育精神中我們應(yīng)該學(xué)習(xí)他堅忍不拔的刻苦精神,激勵學(xué)生愛國、立志。將跑道抽象為數(shù)軸,起跑點為原點,將生活問題數(shù)學(xué)化。

  說明:這種從生活到數(shù)學(xué)的建模,從學(xué)生感興趣的題材出發(fā),為創(chuàng)設(shè)下文的探索情境作一個興奮點的刺激,讓每個學(xué)生都有信心并且能夠積極嘗試、探索。

  4.2體驗進程,讓學(xué)生的思維“活”起來

  “數(shù)學(xué)是問題的心臟”,是教學(xué)的出發(fā)點,由問題引入課題能使學(xué)生產(chǎn)生較強的未知欲。

  [開放式探索]劉翔在一條東西方向的跑道上往返跑步進行訓(xùn)練,他連續(xù)跑了兩段路,共跑了80米。問劉翔兩次以后的位置可能在哪里?設(shè)計意圖:這是一道條件不唯一,結(jié)果也不唯一的開放性題型,對學(xué)生有一定的挑戰(zhàn)性。它的優(yōu)點在于:只要理解題意,任何一個學(xué)生都能答對至少一種正確答案;同時它的答案又分多種情況,學(xué)生由于思維的不完備性,很容易丟失答案,并且這種錯誤在別人的提醒中能馬上恍然大悟。這是一道能鍛煉學(xué)生思維的靈活性、嚴謹性及答案適用分類討論、培養(yǎng)學(xué)生概括能力的好題。在本題中,包含學(xué)生對有理數(shù)加法的意義的理解及探索有理數(shù)加法加數(shù)的幾種類別(從正負性上區(qū)分),在求和的過程中,讓學(xué)生有機會經(jīng)歷從實物模擬到表象操作再到符號操作的轉(zhuǎn)化。

  教學(xué)方法:用課件幫助學(xué)生思維從“實物操作”過渡到“表象操作”并優(yōu)化思路;給予學(xué)生充分的思考機會;善于抓住學(xué)生思維的弱勢因勢利導(dǎo)。

  預(yù)計困難:①學(xué)生直觀思維理解“共跑了80米”就是在離出發(fā)點80米遠的地方。這是一個距離與位移的概念混淆并且教學(xué)中不宜新增概念。 ②條件中的'“兩段”和“80米”分別對應(yīng)加法中的什么量?有的學(xué)生不理解題意,可能放棄。

  處理方法:①教學(xué)中學(xué)生思維上的弱點也可能會成為他這堂課思維的亮點,讓學(xué)生在練習(xí)紙上嘗試“實物操作”思維方式,自己突破思維瓶頸。②在學(xué)生正確理解80米的條件使用方法后,再讓學(xué)生比較80與加數(shù)的絕對值、和的絕對值的關(guān)系,在理解能力上更上一層樓。③區(qū)別不同程度的學(xué)生,可以從“列式子”,“列等式”,問“為什么”逐步遞進,讓盡可能多的學(xué)生嘗試最近發(fā)展區(qū)。

  教學(xué)注意點:要明確本堂課的教學(xué)重點和目標(biāo),對開放題的探索淺嘗止,不深究問題的所有可能性,剪輯學(xué)生答案盡快引出課題。

  4.3探究規(guī)律,讓學(xué)生的思維“跳”起來

  用分類討論的方法進行有理數(shù)的加法規(guī)律的歸納是本節(jié)課的重點和難點,教師要依據(jù)學(xué)生現(xiàn)有得出的學(xué)習(xí)發(fā)現(xiàn)組織語言,減少指示或命令性語言,爭取把課堂靜止或?qū)W生不理解時間減至最少。

  在答案的匯總過程中,要肯定學(xué)生的探索,愛護學(xué)生的學(xué)習(xí)興趣和探索欲。讓學(xué)生作課堂的主人,陳述自己的結(jié)果。對學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評價;要鼓勵學(xué)生創(chuàng)造性思維,教師要及時抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵,是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑。

  預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:

 、購募訑(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負數(shù)+負數(shù);正數(shù)+負數(shù);數(shù)+0)

  ②從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))

 、蹚挠欣頂(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)

 、軓南蛄康牡有苑矫(加數(shù)的絕對值相加;加數(shù)的絕對值相減)

 、輳暮偷姆柎_定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)

  教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏。

  《有理數(shù)的加法》教案 10

  一、教學(xué)內(nèi)容分析

  本節(jié)課是有理數(shù)加法的法則推導(dǎo)和計算,在此基礎(chǔ)上,學(xué)生已經(jīng)學(xué)過了正數(shù)和負數(shù)的認識及實際表示的意義和有理數(shù)的大小比較。本節(jié)課將在此基礎(chǔ)上授導(dǎo)學(xué)生學(xué)習(xí)有理數(shù)的加法法則,解決同號、異號兩數(shù)相加的計算。

  二、學(xué)習(xí)者分析

  七年級的學(xué)生,其思維已經(jīng)明顯地具備了邏輯思維性,并且學(xué)生已經(jīng)在我的要求下,學(xué)會了預(yù)習(xí)、初步養(yǎng)成了預(yù)習(xí)的習(xí)慣,逐漸養(yǎng)成了合作交流的習(xí)慣。只要我們教師通過具體的問題的指引、學(xué)生小組間的合作和交流,是可以完成本節(jié)課的教學(xué)目標(biāo)的。

  三、教學(xué)目標(biāo)

  1、使學(xué)生掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、讓學(xué)生親身經(jīng)歷探究有理數(shù)加法法則的過程,深刻感受分類討論、數(shù)形結(jié)合的思想,感受由具體到抽象、由特殊到一般的認知規(guī)律;

  3、讓學(xué)生通過研討、分類、比較等方法的學(xué)習(xí),培養(yǎng)歸納總結(jié)知識的能力。

  四、信息技術(shù)應(yīng)用分析

  由于本節(jié)課的知識點是探究有理數(shù)加法法則,要求學(xué)生掌握并會運用,所以為了節(jié)省時間和極大的提高學(xué)生的學(xué)習(xí)興趣,選用了多媒體進行教學(xué),把所有的'內(nèi)容用電子的白板展示出來。

  五、教學(xué)過程

  1、復(fù)習(xí)提問,引入新知

  通過對小學(xué)加法及數(shù)軸知識的應(yīng)用的復(fù)習(xí),讓學(xué)生既鞏固了原來所學(xué)的知識,又可以引出新課。

  2、出示問題情境、解決新知

  在解決新知的過程中,由于學(xué)生利用已有的知識及題目提示,運用學(xué)生互相合作交流,并且由各個小組進行展示答案。

  3、探索發(fā)現(xiàn),歸納新知

  利用學(xué)生展示的答案,學(xué)生分組進行歸納總結(jié),得出有理數(shù)運算法則。

  學(xué)生通過合作交流,養(yǎng)成在日常生活中和別人交流合作的好習(xí)慣。,通過展示成果培養(yǎng)了學(xué)生的自信心。

  4、展示例題、應(yīng)用新知

  此環(huán)節(jié)鞏固了所學(xué)知識,并且通過本環(huán)節(jié)讓學(xué)生體會小組合作的樂趣,體會利用法則解決實際問題的方法。

  5、達標(biāo)訓(xùn)練,鞏固新知

  本環(huán)節(jié)進一步鞏固了所學(xué)的知識,在互動回答是采用哪個小組舉手多、舉得早,讓哪個小組來回答;讓學(xué)生養(yǎng)成一種競爭意識,合作交流意識。

  6、規(guī)律總結(jié),升華新知

  本環(huán)節(jié)著重總結(jié)有關(guān)有理數(shù)加法法則,讓學(xué)生進行小結(jié),逐步養(yǎng)成學(xué)生在解決問題時隨時總結(jié)規(guī)律的習(xí)慣,并對本節(jié)課的知識進行梳理、加深和鞏固。

  7、作業(yè)和運用,拓展新知

  通過作業(yè)學(xué)生進一步鞏固所學(xué)知識,強化對知識的理解和應(yīng)用,通過挑戰(zhàn)自我來拓展學(xué)生知識面,發(fā)展學(xué)生的認識。

  《有理數(shù)的加法》教案 11

  【教學(xué)目標(biāo)】

  1. 通過學(xué)習(xí),能感受到數(shù)學(xué)知識來源于生活又可應(yīng)用于實際生活,激發(fā)學(xué)習(xí)的興趣。

  2.通過探索,能歸納總結(jié)出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。

  3.掌握有理數(shù)加法法則,并能準(zhǔn)確地進行有理數(shù)加法運算。

  【學(xué)習(xí)重點、難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算;

  難點:異號兩數(shù)如何相加的法則。

  【學(xué)習(xí)過程】

  一、 預(yù)習(xí)自學(xué):

  1.蛋糕店上半年掙5萬,下半年掙3萬,請問一年共掙多少錢?

  2.蛋糕店上半年賠5萬,下半年賠3萬,請問一年共掙多少錢?

  3.蛋糕店上半年掙5萬,下半年賠3萬,請問一年共掙多少錢?

  4.蛋糕店上半年賠5萬,下半年掙3萬,請問一年共掙多少錢?

  5.蛋糕店上半年掙5萬,下半年賠5萬,請問一年共掙多少錢?

  6.蛋糕店上半年賠5萬,下半年掙0萬,請問一年共掙多少錢?

  請你列式計算,并引導(dǎo)學(xué)生對前面的七個加法運算進行合理的分類探討:和的符號怎樣確定?和的絕對值怎樣確定?(小組討論展示)

  二、 教師點撥

  知識點一:引導(dǎo)學(xué)生對前面的七個加法運算進行合理的分類

  同號兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  異號兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

  (+5)+(-5)=______

  一數(shù)與零相加: (-5)+0=______;

  知識點二:探討:和的符號怎樣確定?和的絕對值怎樣確定?

  結(jié)論:有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的`符號,并把絕對值相加。

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

  3.一個數(shù)同0相加,仍得這個數(shù)。

  三.例題精講;例1(學(xué)生自學(xué),教師示范。注意解題步驟)

  四、課堂練習(xí);36頁隨堂練習(xí)與習(xí)題(小組展示交流)

  五、當(dāng)堂檢測;

  1.用生活中的事例說明下列算是的意義,并計算出結(jié)果:

 。-2)+(-3);(-3)+2

  2.有理數(shù)加法法則:

  絕對值不相等的兩數(shù)相加,取絕對值的加數(shù)的符號,并用較大的絕對值較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得.

  3.計算:(+15)+(-7);(-39)+(-21);

  (-37)+22;(-3)+(+3)

  《有理數(shù)的加法》教案 12

  教學(xué)目標(biāo)

  1、知識與技能:

  (1)有理數(shù)加法的運算律。

  (2)有理數(shù)加法在實際中的應(yīng)用。

  2、過程與方法:

  (1)經(jīng)歷探索有理數(shù)加法運算律的過程,理解有理數(shù)的加法運算律。

  (2)利用運算律進行適當(dāng)?shù)?推理訓(xùn)練,逐步培養(yǎng)學(xué)生的邏輯思維能力

  3、情感態(tài)度與價值觀:

  (1)學(xué)生通過交流、歸納、總結(jié)有理數(shù)加法的運算律,體會新舊知識的聯(lián)系。

  (2)通過運用有理數(shù)加法法則解決實際問題,來增強學(xué)生的應(yīng)用意識。

  重點有理數(shù)加法的運算律。

  難點運用加法運算律簡化運算

  教學(xué)過程

  一、創(chuàng)設(shè)情景我們以前學(xué)過加法交換律、結(jié)合律,在有理數(shù)的加法中它們還適用嗎?計算 30+(-20),(-20)+30。

  兩次所得的和相同嗎?換幾個加數(shù)再試試。

  計算:-7+2 (-10)+(-5)

  二、探究新知

  1、填空

  (1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4

  (2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______

  2、

  (1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______

  (2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________

  《有理數(shù)的加法》教案 13

  第一課時

  三維目標(biāo)

  一、知識與技能

  理解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能準(zhǔn)確地進行有理數(shù)的加法運算。

  二、過程與方法

  引導(dǎo)學(xué)生觀察符號及絕對值與兩個加數(shù)的符號及其他絕對值的關(guān)系,培養(yǎng)學(xué)生的分類、歸納、概括能力。

  三、情感態(tài)度與價值觀

  培養(yǎng)學(xué)生主動探索的良好學(xué)習(xí)習(xí)慣。

  教學(xué)重、難點與關(guān)鍵

  1.重點:掌握有理數(shù)加法法則,會進行有理數(shù)的加法運算。

  2.難點:異號兩數(shù)相加的法則。

  3.關(guān)鍵:培養(yǎng)學(xué)生主動探索的良好學(xué)習(xí)習(xí)慣。

  四、教學(xué)過程

  一、復(fù)習(xí)提問,引入新課

  1.有理數(shù)的絕對值是怎樣定義的?如何計算一個數(shù)的絕對值?

  2.比較下列每對數(shù)的`大小。

  (1)-3和-2; (2)│-5│和│5│; (3)-2與│-1│;(4)-(-7)和-│-7│。

  五、新授

  在小學(xué)里,我們已學(xué)習(xí)了加、減、乘、除四則運算,當(dāng)時學(xué)習(xí)的運算是在正有理數(shù)和零的范圍內(nèi)。然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍,例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。本章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球,那么哪個隊的凈勝球多呢?

  要解決這個問題,先要分別求出它們的凈勝球數(shù)。

  紅隊的凈勝球數(shù)為:4+(-2);

  藍隊的凈勝球數(shù)為:1+(-1)。

  這里用到正數(shù)與負數(shù)的加法。

  怎樣計算4+(-2)呢?

  下面借助數(shù)軸來討論有理數(shù)的加法。

  看下面的問題:

  一個物體作左右方向的運動,我們規(guī)定向左為負、向右為正。

  (1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結(jié)果是什么?

  《有理數(shù)的加法》教案 14

  【教學(xué)目標(biāo)】

  1.進一步理解有理數(shù)加法的實際意義;

  2.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)加法法則;

  3.感受數(shù)學(xué)模型的思想;

  4.養(yǎng)成認真計算的習(xí)慣.

  【對話探索設(shè)計】

  〖探索1

  1.第一天贏利,第二天還贏利,兩天合起來算,是贏利還是虧本?

  2.第一天虧本,第二天還是虧本,兩天合起來算,是贏利還是虧本?

  3.一個物體作左右方向的運動,規(guī)定向右為正.如果物體先向左運動5m,再向左運動3m, 那么兩次運動后總的結(jié)果是什么?

  假設(shè)原點為運動起點,用數(shù)軸檢驗?zāi)愕拇鸢?

  〖法則理解

  有理數(shù)加法法則第1條是:同號兩數(shù)相加,取___________,并把絕對值_________.

  這條法則包括兩種情況:

  (1)兩個正數(shù)相加,顯然取正號,并把絕對值相加,例(+3)+(+5)=+8;

  (2)兩個負數(shù)相加,取_____號,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-號,是因為______________,8是由_____的絕對值和______的絕對值相______而得.

  〖練習(xí)

  1.上午6時的氣溫是-5℃,下午5時的氣溫比上午6時下降3℃, 下午5時的氣溫是多少?

  2.第一場比賽紅隊勝黃隊5:2,第二場比賽藍隊勝黃隊3:1, 兩場比賽黃隊凈勝幾個球?

  3.第一天向北走-30km,第二天又向北走-40km,兩天一共向北走多少km?

  4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

  (1)-10+(-30)=

  (2)(-100)+(-200) =

  (3)(-188)+(-309)=

  〖探索2

  1.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?如果第二天虧本120元呢?

  2.第一天贏利,第二天虧本,兩天合起來算,是贏利還是虧本?

  3.正數(shù)和負數(shù)相加,結(jié)果是正數(shù)還是負數(shù)?

  〖法則理解

  有理數(shù)加法法則第2條的前半部分是:絕對值不相等的異號兩數(shù)相加,取_________________的符號,并用_______________減去_________________.

  例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+號,是因為兩個加數(shù)(+6與-2)中________的`絕對值較大;答案+4的絕對值4是由加數(shù)中較大的絕對值______減去較小的絕對值____得到.

  又例,計算(-8)+(+3)時,先取______號,這是因為兩個加數(shù)中,______的絕對值較大.然后再用較大的絕對值____減去較小的絕對值____,得_____,于是最后得到答案是______.計算的過程可以寫成(-8)+(+3) = -(8-3) = -5.

  〖議一議

  有人說,正數(shù)和負數(shù)相加時,實質(zhì)就是把加法運算轉(zhuǎn)化為小學(xué)的減法運算.他說的對不對?

  〖練習(xí)

  1.第一場比賽紅隊勝黃隊5:2,第二場比賽黃隊勝藍隊3:1, 兩場比賽黃隊凈勝幾個球?

  2.如果物體先向右運動5米,再向右運動-8米,那么兩次運動后總的結(jié)果是什么?

  3. 檢查3包洗衣粉的重量(單位:克), 把其中超過標(biāo)準(zhǔn)重量的數(shù)量記為正數(shù),不足的數(shù)量記作負數(shù),結(jié)果如下:

  -3.5,+1.2,-2.7.

  這3包洗衣粉的重量一共超過標(biāo)準(zhǔn)重量多少?

  4.仿照(-8)+(+3) =-(8-3) = -5的格式解題:

  (1)(-3)+(+8)=

  (2)-5+(+4)=

  (3)(-100)+(+30)=

  (4)(-100)+(+109)=

  〖法則理解

  有理數(shù)加法法則第2條的后半部分是:互為相反數(shù)的兩個數(shù)相加得_____.

  例如(+3)+(-3) = ______,(-108)+(+108) = ______.

  〖例題學(xué)習(xí)

  P21.例1,例2

  P22.練習(xí)2(按例1格式算.)

  〖作業(yè)

  P29.習(xí)題 1, P32.習(xí)題 8,9,10

  【備選素材】

  用一個□表示+1,用一個■表示-1.顯然□+■=0,

  (1)■■+□□□=(■+□)+(■+□)+ □=_____.

  這表明-2+3=+(3-2)=1.

  想一想:答案為什么是正的?為什么轉(zhuǎn)化為減法運算?

  (2)計算■■■■■+□□□□□=_____.

  (3)計算■■■■■+□□=(■■+□□)+ ■■■=______.

  這說明-5+(+2)=-(___-___)=_______.

  (4)計算■■■+□□□□□=?

  《有理數(shù)的加法》教案 15

  教學(xué)目標(biāo)

  知識與技能:

  掌握有理數(shù)加法法則,并能運用法則進行有理數(shù)加法的運算。

  過程與方法:

  1.經(jīng)歷有理數(shù)加法法則的探究過程,深刻感受分類討論、數(shù)形結(jié)合的思想,由具體到抽象、由特殊到一般的認知規(guī)律;

  2.動手、發(fā)現(xiàn)、分類、比較等方法的學(xué)習(xí),培養(yǎng)歸納能力。

  情感態(tài)度與價值觀:

  1.通過師生合作交流,學(xué)生主動參與探索獲得數(shù)學(xué)知識,從而提高學(xué)習(xí)數(shù)學(xué)的積極性;

  2.體會數(shù)學(xué)來源于生活,服務(wù)于生活,培養(yǎng)熱愛數(shù)學(xué)的情感,體會數(shù)學(xué)的應(yīng)用價值;

  3.培養(yǎng)善于觀察、勤于思考的學(xué)習(xí)習(xí)慣,樹立合作意識,體驗成功,提高學(xué)習(xí)自信心。

  教學(xué)重點

  有理數(shù)加法法則及運用

  教學(xué)難點

  異號兩數(shù)相加法則

  教具準(zhǔn)備

  powerpoint課件

  課時安排

  1課時

  教學(xué)過程環(huán)節(jié)教師活動學(xué)生活動設(shè)計意圖創(chuàng)設(shè)情境引入新課XX年6月11日至7月11日,第19屆世界杯足球賽在南非舉行。來自世界各國的32支球隊為全世界的球迷送上了一場完美的足球盛宴。

  小組循環(huán)賽中,勝一場得3分,平一場得1分,負一場得0分,積分最多的兩支隊伍進入十六強。積分相同時,凈勝球多者為勝。

  以B組為例,進入十六強的是阿根廷和韓國。

  國家賽勝平負得分阿根廷韓國希臘尼日利亞再以A組為例,A組積分榜,國家賽勝平負得分進球失球凈勝球烏拉圭+40墨西哥+3-2南非+3-5法國+1-4師:從A組積分榜可以看出墨西哥和南非的積分相同,那么究竟應(yīng)該確定哪個隊進入十六強呢?此時則需要計算各隊的凈勝球數(shù)。你能列出計算各隊凈勝球數(shù)的.算式嗎?

  學(xué)生看圖表,思考問題。

  學(xué)生列出計算凈勝球數(shù)的算式。利用世界杯的例子,體現(xiàn)數(shù)學(xué)來源于生活,讓學(xué)生體會學(xué)習(xí)有理數(shù)加法的必要性,更能激發(fā)學(xué)生的興趣,體會學(xué)習(xí)有理數(shù)運算的必要性。環(huán)節(jié)教師活動學(xué)生活動設(shè)計意圖探索新知

  師:凈勝球數(shù)的計算實際上涉及到有理數(shù)的加法。今天我們就來研究有理數(shù)的加法運算。

  《有理數(shù)的加法》教案 16

  一.教學(xué)目標(biāo)

  1.知識與技能

  (1)通過足球賽中的凈勝球數(shù),使學(xué)生掌握有理數(shù)加法法則,并能運用法則進行計算;

 。2)在有理數(shù)加法法則的教學(xué)過程中,注意培養(yǎng)學(xué)生的運算能力.

  2.過程與方法

  通過觀察,比較,歸納等得出有理數(shù)加法法則。能運用有理數(shù)加法法則解決實際問題。

  3.情感態(tài)度與價值觀

  認識到通過師生合作交流,學(xué)生主動叁與探索獲得數(shù)學(xué)知識,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

  二、教學(xué)重難點及關(guān)鍵:

  重點:會用有理數(shù)加法法則進行運算.

  難點:異號兩數(shù)相加的法則.

  關(guān)鍵:通過實例引入,循序漸進,加強法則的應(yīng)用.

  三、教學(xué)方法

  發(fā)現(xiàn)法、歸納法、與師生轟動緊密結(jié)合.

  四、教材分析

  “有理數(shù)的加法”是人教版七年級數(shù)學(xué)上冊第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個課時,本課時是本節(jié)內(nèi)容的第一課時,本課設(shè)計主要是通過球賽中凈勝球數(shù)的實例來明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學(xué)習(xí)“有理數(shù)的減法”做鋪墊。

  五、教學(xué)過程

 。ㄒ唬﹩栴}與情境

  我們已經(jīng)熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的.凈勝球為4+(-2),黃隊的凈勝球為1+(-1),這里用到正數(shù)與負數(shù)的加法。

 。ǘ⿴熒餐骄坑欣頂(shù)加法法則

  前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識,從今天起開始學(xué)習(xí)有理數(shù)的運算.這節(jié)課我們來研究兩個有理數(shù)的加法.兩個有理數(shù)相加,有多少種不同的情形?為此,我們來看一個大家熟悉的實際問題:

  足球比賽中贏球個數(shù)與輸球個數(shù)是相反意義的量.若我們規(guī)定贏球為“正”,輸球為“負”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學(xué)校足球隊在一場比賽中的勝負可能有以下各種不同的情形:

  (1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球.也就是

  (+3)+(+1)=+4.

  (2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是

  (-2)+(-1)=-3.

  現(xiàn)在,請同學(xué)們說出其他可能的情形.

  答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是

  (+3)+(-2)=+1;

  上半場輸了3球,下半場贏了2球,全場輸了1球,也就是

  (-3)+(+2)=-1;

  上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是

  (+3)+0=+3;

  上半場輸了2球,下半場兩隊都沒有進球,全場仍輸2球,也就是

  (-2)+0=-2;

  上半場打平,下半場也打平,全場仍是平局,也就是

  0+0=0.

  上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學(xué)們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結(jié)果的符號怎么定?絕對值怎么算?

  這里,先讓學(xué)生思考,師生交流,再由學(xué)生自己歸納出有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3.一個數(shù)同0相加,仍得這個數(shù).

 。ㄈ⿷(yīng)用舉例 變式練習(xí)</p>

  例1 口答下列算式的結(jié)果

  (1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

  (5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

  學(xué)生逐題口答后,師生共同得出:進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應(yīng)該先確定“和”的符號,再計算“和”的絕對值.

  例2(教科書的例1)

  解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第1條計算)

  =-(3+9) (和取負號,把絕對值相加)

  =-12.

 。2)(-4.7)+3.9 (兩個加數(shù)異號,用加法法則的第2條計算)

  =-(4.7-3.9) (和取負號,把大的絕對值減去小的絕對值)

  =-0.8

  例3(教科書的例2)教師在算出紅隊的凈勝球數(shù)后,學(xué)生自己算黃隊和藍隊的凈勝球數(shù)

  下面請同學(xué)們計算下列各題以及教科書第23頁練習(xí)第1與第2題

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  學(xué)生書面練習(xí),四位學(xué)生板演,教師巡視指導(dǎo),學(xué)生交流,師生評價。

 。ㄋ模┬〗Y(jié)

  1.本節(jié)課你學(xué)到了什么?

  2.本節(jié)課你有什么感受?(由學(xué)生自己小結(jié))

 。ㄎ澹┳鳂I(yè)設(shè)計

  1.計算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

  (5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

  2.計算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

  3.用“>”或“<”號填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0|a|>|b|,那么a+b ______0

 。┌鍟O(shè)計

  1.3.1有理數(shù)加法

  一、加法法則二、例1例2例3

  《有理數(shù)的加法》教案 17

  【教學(xué)目標(biāo)】

  1. 通過學(xué)習(xí),能感受到數(shù)學(xué)知識來源于生活又可應(yīng)用于實際生活,激發(fā)學(xué)習(xí)的興趣。

  2.通過探索,能歸納總結(jié)出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。

  3.掌握有理數(shù)加法法則,并能準(zhǔn)確地進行有理數(shù)加法運算。

  【學(xué)習(xí)重點、難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算;

  難點:異號兩數(shù)如何相加的法則。

  【學(xué)習(xí)過程】

  一、 預(yù)習(xí)自學(xué):

  1.蛋糕店上半年掙5萬,下半年掙3萬,請問一年共掙多少錢?

  2.蛋糕店上半年賠5萬,下半年賠3萬,請問一年共掙多少錢?

  3.蛋糕店上半年掙5萬,下半年賠3萬,請問一年共掙多少錢?

  4.蛋糕店上半年賠5萬,下半年掙3萬,請問一年共掙多少錢?

  5.蛋糕店上半年掙5萬,下半年賠5萬,請問一年共掙多少錢?

  6.蛋糕店上半年賠5萬,下半年掙0萬,請問一年共掙多少錢?

  請你列式計算,并引導(dǎo)學(xué)生對前面的七個加法運算進行合理的分類探討:和的符號怎樣確定?和的絕對值怎樣確定?(小組討論展示)

  二、 教師點撥

  知識點一:引導(dǎo)學(xué)生對前面的七個加法運算進行合理的分類

  同號兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  異號兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

 。ǎ5)+(-5)=______

  一數(shù)與零相加: (-5)+0=______;

  知識點二:探討:和的符號怎樣確定?和的絕對值怎樣確定?

  結(jié)論:有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的.兩個數(shù)相加得0。

  3.一個數(shù)同0相加,仍得這個數(shù)。

  三.例題精講;例1(學(xué)生自學(xué),教師示范。注意解題步驟)

  四、課堂練習(xí);36頁隨堂練習(xí)與習(xí)題(小組展示交流)

  五、當(dāng)堂檢測;

  1.用生活中的事例說明下列算是的意義,并計算出結(jié)果:

  (-2)+(-3);(-3)+2

  2.有理數(shù)加法法則:

  絕對值不相等的兩數(shù)相加,取絕對值的加數(shù)的符號,并用較大的絕對值較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得.

  3.計算:(+15)+(-7);(-39)+(-21);

 。-37)+22;(-3)+(+3)

  《有理數(shù)的加法》教案 18

  教學(xué)目標(biāo)

  1、知識目標(biāo):借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性,會判斷一個數(shù)是正數(shù)還是負數(shù). 2、能力目標(biāo):能應(yīng)用正負數(shù)表示生活中具有相反意義的量. 3、情感態(tài)度:讓學(xué)生了解有關(guān)負數(shù)的歷史、體會負數(shù)與實際生活的聯(lián)系.教學(xué)重難點

  重點:

  理解有理數(shù)的意義.

  難點:

  能用正負數(shù)表示生活中具有相反意義的量.教學(xué)過程

  一、創(chuàng)設(shè)情境、提出問題

  某班舉行知識競賽,評分標(biāo)準(zhǔn)是:答對一題加1分,答錯一題扣1分,不回答得0分;每個隊的基礎(chǔ)分均為0分.兩個隊答題情況見書上第23頁.

  二、分析探索、問題解決

  分組討論扣的分怎樣表示?

  用前面學(xué)的數(shù)能表示嗎?

  數(shù)怎么不夠用了?

  引出課題.

  講授正數(shù)、負數(shù)、有理數(shù)的定義.

  用負數(shù)表示比“0”低的數(shù),如:-10,讀作負10,表示比0低10分的數(shù).啟發(fā)學(xué)生再從生活中例舉出用負數(shù)表示具有相反意義的數(shù).三、鞏固練習(xí)

  1、用正數(shù)或負數(shù)表示下列各題中的數(shù)量:

 。1)如果火車向東開出400千米記作+400千米,那么火車向西開出4000千米,記作______;

  (2)球賽時,如果勝2局記作+2,那么-2表示______;

 。3)若-4萬表示虧損4萬元,那么盈余3萬元記作______;

  (4)+150米表示高出海平面150米,低于海平面200米應(yīng)記作______.分析:用正、負數(shù)可分別表示具有相反意義的量,通常高于海平面的高度用正數(shù)表示,低于海平面的高度用負數(shù)表示;

  完全相反的兩個方向,一個方向定為用正數(shù)表示,則另一個方向用負數(shù)表示;如運進與運出,收入與支出,盈利與虧損,買進與賣出,勝與負等都是具有相反意義的量.

  2、下面說法中正確的`是().

  a.“向東5米”與“向西10米”不是相反意義的量;

  b.如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;

  c.如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;

  d.若將高1米設(shè)為標(biāo)準(zhǔn)0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米.

  三、小結(jié)回顧、納入體系

  學(xué)生交流回顧、討論總結(jié),教師補充如下:

  概念:正數(shù)、負數(shù)、有理數(shù).

  分類:有理數(shù)的分類:兩種分法.

  應(yīng)用:有理數(shù)可以用來表示具有相反意義的量.

  《有理數(shù)的加法》教案 19

  【目標(biāo)預(yù)覽】

  知識技能:

  1、通過實例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、在有理數(shù)加法法則的教學(xué)過程中,培養(yǎng)觀察、比較、歸納及運算能力。

  數(shù)學(xué)思考:

  1、正確地進行有理數(shù)的加法運算;

  2、用數(shù)形結(jié)合的思想方法得出有理數(shù)加法法則。

  解決問題:能運用有理數(shù)加法解決實際問題。

  情感態(tài)度:通過師生活動、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來。

  【教學(xué)重點和難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算;難點:異號兩數(shù)如何相加的法則。

  【情景設(shè)計】

  我們來看一個大家熟悉的實際問題:

  足球比賽中進球個數(shù)與失球個數(shù)是相反意義的量、若我們規(guī)定進球為“正”,失球為“負”。比如,進3個球記為正數(shù):+3,失2個球記為負數(shù):—2,它們的和為凈勝球數(shù):(+3)+(—2)學(xué)校足球隊在一場比賽中的勝負情況如下:

 。1)紅隊進了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(—2)

 。2)藍隊進了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(—1)

  這里,就需要用到正數(shù)與負數(shù)的加法。

  下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。

  【探求新知】

  一個物體作左右運動,我們規(guī)定向左為負,向右為正。向右運動5m,可以記作多少?向左運動5m呢?

  (1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結(jié)果是多少呢?利用數(shù)軸演示(如圖1),把原點假設(shè)為運動起點。

  兩次運動后物體從起點向右運動了8m。寫成算式是:5+3=8①

  利用數(shù)軸依次討論如下問題,引導(dǎo)學(xué)生自己尋找算式的答案:

 。2)如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結(jié)果是多少呢?

  (3)如果物體先向右運動5m,再向左運動3m,那么兩次運動后總的結(jié)果是多少呢?

 。4)如果物體先向左運動5m,再向右運動3m,那么兩次運動后總的結(jié)果是多少呢?

 。5)如果物體先向左運動5m,再向右運動5m,那么兩次運動后總的`結(jié)果是多少呢?

 。6)如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結(jié)果是多少呢?

 。7)如果物體第一分鐘向右(或向左)運動5m,第二分鐘原地不動,那么兩次運動后總的結(jié)果是多少呢?

  總結(jié):依次可得

  (1)(—5)+(—3)=—8②

 。2)5+(—3)=2③

  (3)3+(—5)=—2④

 。4)5+(—5)=0⑤

 。5)(—5)+5=0⑥

 。6)5+0=5或(—5)+0=—5⑦

  觀察上述7個算式,自己歸納出有理數(shù)加法法則:

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3、一個數(shù)同0相加,仍得這個數(shù)。

  【范例精析】

  例1計算下列算式的結(jié)果,并說明理由:

 。1)(+4)+(+7);

 。2)(—4)+(—7);

  (3)(+4)+(—7);

 。4)(+9)+(—4);

  (5)(+4)+(—4);

 。6)(+9)+(—2);

 。7)(—9)+(+2);

  (8)(—9)+0;

 。9)0+(+2);

 。10)0+0、

  學(xué)生逐題口答后,教師小結(jié):

  進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則、進行計算時,通常應(yīng)該先確定“和”的符號,再計算“和”的絕對值、

  解:(1)(—3)+(—9)(兩個加數(shù)同號,用加法法則的第2條計算)

  =—(3+9)(和取負號,把絕對值相加)

  =—12、

  例3足球循環(huán)比賽中,紅隊勝黃隊4s1,黃隊勝藍隊1s0,藍隊勝紅隊1s0,計算各隊的凈勝球數(shù)。

  解:我們規(guī)定進球為“正”,失球為“負”。它們的和為凈勝球數(shù)。

  三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(—2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(—4)= —2;

  藍隊共進1球,失1球,凈勝球數(shù)為(+1)+(—1)=0;

  【一試身手】

  下面請同學(xué)們計算下列各題:

 。1)(—0.9)+(+1.5);(2)(+2.7)+(—3);(3)(—1.1)+(—2.9);

  全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對學(xué)生板演進行講評、

  【總結(jié)陳詞】

  1、這節(jié)課我們從實例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則、今后我們經(jīng)常要用類似的思想方法研究其他問題。

  2、應(yīng)用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。

  【實戰(zhàn)操練】

  1、計算:

 。1)(—10)+(+6);

 。2)(+12)+(—4);

 。3)(—5)+(—7);

 。4)(+6)+(+9);

 。5)67+(—73);

 。6)(—84)+(—59);

 。7)33+48;

  (8)(—56)+37、

  2、計算:

 。1)(—0.9)+(—2.7);

 。2)3.8+(—8.4);

 。3)(—0.5)+3;

 。4)3.29+1.78;

  (5)7+(—3.04);

  (6)(—2.9)+(—0.31);

 。7)(—9.18)+6.18;

  (8)4.23+(—6.77);

 。9)(—0.78)+0、

  3、計算:

  4、用“>”或“<”號填空:

 。1)如果a>0,b>0,那么a+b ______0;

 。2)如果a<0,b<0,那么a+b ______0;

 。3)如果a>0,b<0|a|>|b|,那么a+b ______0;

 。4)如果a<0,b>0|a|>|b|,那么a+b ______0、

  5、分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:

 。1)a>0,b>0;(2)a<0,b<0;

  (3)a>0,b<0|a|>|b|;(4)a>0,b<0|a|<|b|。

  《有理數(shù)的加法》教案 20

  學(xué)習(xí)目標(biāo)

  1. 理解有理數(shù)的加法法則.

  2. 能夠應(yīng)用有理數(shù)的加法法則,將有理數(shù)的加法轉(zhuǎn)化為非負數(shù)的加減運算.

  3. 掌握異號兩數(shù)的加法運算的規(guī)律.

  [知識講解]

  正有理數(shù)及0的加法運算,小學(xué)已經(jīng)學(xué)過,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是紅隊的凈勝球數(shù)為

  4+(-2),

  藍隊的凈勝球數(shù)為

  1+(-1)。

  這里用到正數(shù)和負數(shù)的加法。

  下面借助數(shù)軸來討論有理數(shù)的加法。

  一、負數(shù)+負數(shù)

  如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走3米,兩次共向西走多少米?很明顯,兩次共向西走了6米.

  這個問題用算式表示就是:(-2)+(-4)=-6.

  這個問題用數(shù)軸表示就是如圖1所示:

  二、負數(shù)+正數(shù)

  如果向西走2米,再向東走4米, 那么兩次運動后 這個人從起點向東走2米,寫成算式就是

  (—2)+4=2。

  這個問題用數(shù)軸表示就是如圖2所示:

  探究

  利用數(shù)軸,求以下情況時這個人兩次運動的結(jié)果:

 。ㄒ唬┫认驏|走3米,再向西走5米,物體從起點向()運動了()米;

  (二)先向東走5米,再向西走5米,物體從起點向()運動了()米;

  (三)先向西走5米,再向東走5米,物體從起點向()運動了()米。 這三種情況運動結(jié)果的算式如下:

  3+(—5)= —2;

  5+(—5)= 0;

 。ā5)+5= 0。

  如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人

  從起點向東(或向西)運動了5米。寫成算式就是

  5+0=5或(—5)+0= —5。

  你能從以上7個算式中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?

  三、有理數(shù)加法法則

  1. 同號的'兩數(shù)相加,取相同的符號,并把絕對值相加.

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得零.

  3一個數(shù)同0相加,仍得這個數(shù)。

  四、例題

  例1 計算(-3)+(-9);(2)(-4·7)+3·

  分析:解此題要利用有理數(shù)的加法法則. 解:(1) (-3)+(-9)= -(3+9)= -12:

  (2) (-4·7)+3·9=-(4·7-3·9)= -0·8.

  例2足球循環(huán)賽中,

  紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算各隊的凈勝球數(shù)。 解:每個隊的進球總數(shù)記為正數(shù),失球總數(shù)記為負數(shù),這兩數(shù)的和為這隊的凈勝球數(shù)。 三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為

 。+4)+(—2)=+(4—2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為

 。+2)+(—4)= —(4—2)= ();藍隊共進()球,失()球,凈勝球數(shù)為

 。ǎ=()。

  五、課堂練習(xí)1.填空:

 。1)(-3)+(-5)=;(2)3+(-5)=;

 。3)5+(-3)=;(4)7+(-7)=;

 。5)8+(-1)=;(6)(-8)+1 =;

 。7)(-6)+0 =;(8)0+(-2) =;

  2.計算:

 。1)(-13)+(-18);(2)20+(-14);

 。3)1.7 + 2.8 ;(4)2.3 + (-3.1);

  121)+(-);(6)1+(-1.5); 332

  12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-

  3.想一想,兩個數(shù)的和一定大于每個加數(shù)嗎?請你舉例說明.

  4. 第23頁練習(xí) 1、2。

  課堂練習(xí)答案

  1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;

 。7)-6; (8)-2.

  2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;

  (6)0 ; (7)2.96; (8)-1. 6

  3.不一定,例如兩個負數(shù)的和小于這兩個加數(shù).

  課外作業(yè):第31頁1題.

  課外選做題

  1.判斷題:

 。1)兩個負數(shù)的和一定是負數(shù);

 。2)絕對值相等的兩個數(shù)的和等于零;

 。3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù);

  (4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù).

  2.當(dāng)a = -1.6,b = 2.4時,求a+b和a+(-b)的值.

  3.已知│a│= 8,│b│= 2.

 。1)當(dāng)a、b同號時,求a+b的值;

 。2)當(dāng)a、b異號時,求a+b的值.

  課外選做題答案

  1.(1)對;(2)錯;(3)錯;(4)錯.

  2.a(chǎn)+b和a+(-b)的值分別為0.8、-4.

  3.(1)當(dāng)a、b同號時,a+b的值為10或-10;

【《有理數(shù)的加法》教案】相關(guān)文章:

有理數(shù)的加法教案07-31

有理數(shù)的加法教案[通用]07-31

有理數(shù)的加法與減法教案01-28

有理數(shù)的加法教案(精選15篇)10-18

有理數(shù)的加法教案15篇02-23

有理數(shù)的加法教案[共15篇]08-08

(推薦)有理數(shù)的加法教案15篇09-13

有理數(shù)加法教學(xué)反思11-11

加法的教案04-12