国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

不等式的證明教案

時(shí)間:2023-11-21 13:36:05 證明 我要投稿
  • 相關(guān)推薦

不等式的證明教案

  在平日的學(xué)習(xí)、工作和生活里,大家都不可避免地要接觸到證明吧,證明是證明某人的身份、經(jīng)歷或某件事情的真實(shí)情況時(shí)所使用的一種憑證。一般證明是怎么起草的呢?以下是小編整理的不等式的證明教案,僅供參考,歡迎大家閱讀。

不等式的證明教案

不等式的證明教案1

  目的:以不等式的等價(jià)命題為依據(jù),揭示不等式的常用證明方法之一——比較法,要求學(xué)生能教熟練地運(yùn)用作差、作商比較法證明不等式。

  過程:

  一、復(fù)習(xí):

  1.不等式的'一個(gè)等價(jià)命題

  2.比較法之一(作差法)步驟:作差——變形——判斷——結(jié)論

  二、作差法:(P13—14)

  1. 求證:x2 + 3 > 3x

  證:∵(x2 + 3) - 3x =

  ∴x2 + 3 > 3x

  2. 已知a, b, m都是正數(shù),并且a < b,求證:

  證:

  ∵a,b,m都是正數(shù),并且a 0 , b - a > 0

  ∴ 即:

  變式:若a > b,結(jié)果會(huì)怎樣?若沒有“a < b”這個(gè)條件,應(yīng)如何判斷?

  3. 已知a, b都是正數(shù),并且a b,求證:a5 + b5 > a2b3 + a3b2

  證:(a5 + b5 ) - (a2b3 + a3b2) = ( a5 - a3b2) + (b5 - a2b3 )

  = a3 (a2 - b2 ) - b3 (a2 - b2) = (a2 - b2 ) (a3 - b3)

  = (a + b)(a - b)2(a2 + ab + b2)

  ∵a, b都是正數(shù),∴a + b, a2 + ab + b2 > 0

  又∵a b,∴(a - b)2 > 0 ∴(a + b)(a - b)2(a2 + ab + b2) > 0

  即:a5 + b5 > a2b3 + a3b2

  4. 甲乙兩人同時(shí)同地沿同一路線走到同一地點(diǎn),甲有一半時(shí)間以速度m行走,另一半時(shí)間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m n,問:甲乙兩人誰先到達(dá)指定地點(diǎn)?

  解:設(shè)從出發(fā)地到指定地點(diǎn)的路程為S,

  甲乙兩人走完全程所需時(shí)間分別是t1, t2,

  則: 可得:

  ∴

  ∵S, m, n都是正數(shù),且m n,∴t1 - t2 < 0 即:t1 < t2

  從而:甲先到到達(dá)指定地點(diǎn)。

  變式:若m = n,結(jié)果會(huì)怎樣?

  三、作商法

  5. 設(shè)a, b R+,求證:

  證:作商:

  當(dāng)a = b時(shí),

  當(dāng)a > b > 0時(shí),

  當(dāng)b > a > 0時(shí),

  ∴ (其余部分布置作業(yè))

  作商法步驟與作差法同,不過最后是與1比較。

  四、小結(jié):作差、作商。

  五、作業(yè): P15 練習(xí)。

  P18 習(xí)題6.3 1—4。

不等式的證明教案2

  在前兩節(jié)課的研究當(dāng)中,學(xué)生已掌握了一些簡(jiǎn)單的不等式及其應(yīng)用,并能用不等式及不等式組抽象出實(shí)際問題中的不等量關(guān)系,掌握了不等式的一些簡(jiǎn)單性質(zhì)與證明,研究了一元二次不等式及其解法,學(xué)習(xí)了二元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問題。本節(jié)課的研究是前三大節(jié)學(xué)習(xí)的延續(xù)和拓展。另外,為基本不等式的應(yīng)用墊定了堅(jiān)實(shí)的基礎(chǔ),所以說,本節(jié)課是起到了承上啟下的作用。本節(jié)課是通過讓學(xué)生觀察第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)圖案中隱含的相等關(guān)系與不等關(guān)系而引入的通過分析得出基本不等式,然后從三種角度對(duì)基本不等式展開證明及對(duì)基本不等式展開一些簡(jiǎn)單的應(yīng)用,進(jìn)而更深一層次地從理性角度建立不等觀念。教師應(yīng)作好點(diǎn)撥,利用幾何背景,數(shù)形結(jié)合做好歸納總結(jié)、邏輯分析,并鼓勵(lì)學(xué)生從理性角度去分析探索過程,進(jìn)而更深層次理解基本不等式,鼓勵(lì)學(xué)生對(duì)數(shù)學(xué)知識(shí)和方法獲得過程的探索,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,

  根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、類比、歸納、邏輯分析、思考、合作交流、探究,得出基本不等式,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。

  教學(xué)重點(diǎn)

  1、創(chuàng)設(shè)代數(shù)與幾何背景,用數(shù)形結(jié)合的思想理解基本不等式;

  2、從不同角度探索基本不等式的證明過程;

  3、從基本不等式的證明過程進(jìn)一步體會(huì)不等式證明的常用思路。

  教學(xué)難點(diǎn)

  1、對(duì)基本不等式從不同角度的探索證明;

  2、通過基本不等式的證明過程體會(huì)分析法的證明思路。

  教具準(zhǔn)備 多媒體及課件

  三維目標(biāo)

  一、知識(shí)與技能

  1、創(chuàng)設(shè)用代數(shù)與幾何兩方面背景,用數(shù)形結(jié)合的思想理解基本不等式;

  2、嘗試讓學(xué)生從不同角度探索基本不等式的證明過程;

  3、從基本不等式的證明過程進(jìn)一步體會(huì)不等式證明的常用思路,即由條件到結(jié)論,或由結(jié)論到條件。

  二、過程與方法

  1、采用探究法,按照聯(lián)想、思考、合作交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);

  2、教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;

  3、將探索過程設(shè)計(jì)為較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。

  三、情感態(tài)度與價(jià)值觀

  1、通過具體問題的解決,讓學(xué)生去感受、體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;

  2、學(xué)習(xí)過程中,通過對(duì)問題的探究思考,廣泛參與,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,主動(dòng)、積極的學(xué)習(xí)品質(zhì),從而提高學(xué)習(xí)質(zhì)量;

  3、通過對(duì)富有挑戰(zhàn)性問題的解決,激發(fā)學(xué)生頑強(qiáng)的探究精神和嚴(yán)肅認(rèn)真的科學(xué)態(tài)度,同時(shí)去感受數(shù)學(xué)的應(yīng)用性,體會(huì)數(shù)學(xué)的奧秘、數(shù)學(xué)的簡(jiǎn)潔美、數(shù)學(xué)推理的嚴(yán)謹(jǐn)美,從而激發(fā)學(xué)生的學(xué)習(xí)興趣。

  教學(xué)過程

  導(dǎo)入新課

  探究:上圖是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客,你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?

 。ń處熡猛队皟x給出第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),并介紹此會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。通過直觀情景導(dǎo)入有利于吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)熱情,并增強(qiáng)學(xué)生的愛國(guó)主義熱情)

  推進(jìn)新課

  師 同學(xué)們能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?如何找?

  (沉靜片刻)

  生 應(yīng)該先從此圖案中抽象出幾何圖形。

  師 此圖案中隱含什么樣的幾何圖形呢?哪位同學(xué)能在黑板上畫出這個(gè)幾何圖形?

 。ㄕ(qǐng)兩位同學(xué)在黑板上畫。教師根據(jù)兩位同學(xué)的板演作點(diǎn)評(píng))

 。ㄆ渲兴膫(gè)直角三角形沒有畫全等,不形象、直觀。此時(shí)教師用投影片給出隱含的規(guī)范的幾何圖形)

  師 同學(xué)們觀察得很細(xì)致,抽象出的幾何圖形比較準(zhǔn)確。這說明,我們只要在現(xiàn)有的基礎(chǔ)上進(jìn)一步刻苦努力,發(fā)奮圖強(qiáng),也能作出和數(shù)學(xué)家趙爽一樣的成績(jī)。

 。ù藭r(shí),每一位同學(xué)看上去都精神飽滿,信心百倍,全神貫注地投入到本節(jié)課的學(xué)習(xí)中來)

  [過程引導(dǎo)]

  師 設(shè)直角三角形的兩直角邊的長(zhǎng)分別為a、b,那么,四個(gè)直角三角形的面積之和與正方形的面積有什么關(guān)系呢?

  生 顯然正方形的面積大于四個(gè)直角三角形的面積之和。

  師 一定嗎?

 。ù蠹引R聲:不一定,有可能相等)

  師 同學(xué)們能否用數(shù)學(xué)符號(hào)去進(jìn)行嚴(yán)格的推理證明,從而說明我們剛才直覺思維的合理性?

  生 每個(gè)直角三角形的面積為,四個(gè)直角三角形的面積之和為2ab。正方形的邊長(zhǎng)為,所以正方形的面積為a2+b2,則a2+b2≥2ab。

  師 這位同學(xué)回答得很好,表達(dá)很全面、準(zhǔn)確,但請(qǐng)大家思考一下,他對(duì)a2+b2≥2ab證明了嗎?

  生 沒有,他仍是由我們剛才的直觀所得,只是用字母表達(dá)一下而已。

  師 回答得很好。

 。ㄓ械耐瑢W(xué)感到迷惑不解)

  師 這樣的敘述不能代替證明。這是同學(xué)們?cè)诮忸}時(shí)經(jīng)常會(huì)犯的錯(cuò)誤。實(shí)質(zhì)上,對(duì)文字性語言敘述證明題來說,他只是寫出了已知、求證,并未給出證明。

 。ㄓ械耐瑢W(xué)竊竊私語,確實(shí)是這樣,并沒有給出證明)

  師 請(qǐng)同學(xué)們繼續(xù)思考,該如何證明此不等式,即a2+b2≥2ab。

  生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一個(gè)完全平方數(shù),它是非負(fù)數(shù),即(a-b)2≥0,所以可得a2+b2≥2ab。

  師 同學(xué)們思考一下,這位同學(xué)的證明是否正確?

  生 正確。

 。劢處熅v]

  師 這位同學(xué)的證明思路很好。今后,我們把這種證明不等式的思想方法形象地稱之為“比較法”,它和根據(jù)實(shí)數(shù)的基本性質(zhì)比較兩個(gè)代數(shù)式的大小是否一樣。

  生 實(shí)質(zhì)一樣,只是設(shè)問的形式不同而已。一個(gè)是比較大小,一個(gè)是讓我們?nèi)プC明。

  師 這位同學(xué)回答得很好,思維很深刻。此處的比較法是用差和0作比較。在我們的.數(shù)學(xué)研究當(dāng)中,還有另一種“比較法”。

  (教師此處的設(shè)問是針對(duì)學(xué)生已有的知識(shí)結(jié)構(gòu)而言)

  生 作商,用商和“1”比較大小。

  師 對(duì)。那么我們?cè)谟龅竭@類問題時(shí),何時(shí)采用作差,何時(shí)采用作商呢?這個(gè)問題讓同學(xué)們課后去思考,在解決問題中自然會(huì)遇到。

  (此處設(shè)置疑問,意在激發(fā)學(xué)生課后去自主探究問題,把探究的思維空間切實(shí)留給學(xué)生)

 。酆献魈骄浚

  師 請(qǐng)同學(xué)們?cè)僮屑?xì)觀察一下,等號(hào)何時(shí)取到。

  生 當(dāng)四個(gè)直角三角形的直角頂點(diǎn)重合時(shí),即面積相等時(shí)取等號(hào)。

 。▽W(xué)生的思維仍建立在感性思維基礎(chǔ)之上,教師應(yīng)及時(shí)點(diǎn)撥)

  師 從不等式a2+b2≥2ab的證明過程能否去說明。

  生 當(dāng)且僅當(dāng)(a-b)2=0,即a=b時(shí),取等號(hào)。

  師 這位同學(xué)回答得很好。請(qǐng)同學(xué)們看一下,剛才兩位同學(xué)分別從幾何圖形與不等式兩個(gè)角度分析等號(hào)成立的條件是否一致。

  (大家齊聲)一致。

  (此處意在強(qiáng)化學(xué)生的直覺思維與理性思維要合并使用。就此問題來講,意在強(qiáng)化學(xué)生數(shù)形結(jié)合思想方法的應(yīng)用)

  板書:

  一般地,對(duì)于任意實(shí)數(shù)a、b,我們有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

  [過程引導(dǎo)]

  師 這是一個(gè)很重要的不等式。對(duì)數(shù)學(xué)中重要的結(jié)論,我們應(yīng)仔細(xì)觀察、思考,才能挖掘出它的內(nèi)涵與外延。只有這樣,我們用它來解決問題時(shí)才能得心應(yīng)手,也不會(huì)出錯(cuò)。

 。ㄍ瑢W(xué)們的思維再一次高度集中,似乎能從不等式a2+b2≥2ab中得出什么。此時(shí),教師應(yīng)及時(shí)點(diǎn)撥、指引)

  師 當(dāng)a>0,b>0時(shí),請(qǐng)同學(xué)們思考一下,是否可以用a、b代替此不等式中的a、b。

  生 完全可以。

  師 為什么?

  生 因?yàn)椴坏仁街械腶、b∈R。

  師 很好,我們來看一下代替后的結(jié)果。

  板書:

  即 (a>0,b>0)。

  師 這個(gè)不等式就是我們這節(jié)課要推導(dǎo)的基本不等式。它很重要,在數(shù)學(xué)的研究中有很多應(yīng)用,我們常把叫做正數(shù)a、b的算術(shù)平均數(shù),把a(bǔ)b叫做正數(shù)a、b的幾何平均數(shù),即兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

  (此處意在引起學(xué)生的重視,從不同的角度去理解)

  師 請(qǐng)同學(xué)們嘗試一下,能否利用不等式及實(shí)數(shù)的基本性質(zhì)來推導(dǎo)出這個(gè)不等式呢?

 。ù藭r(shí),同學(xué)們信心十足,都說能。教師利用投影片展示推導(dǎo)過程的填空形式)

  要證:,①

  只要證a+b≥2,②

  要證②,只要證:a+b-2≥0,③

  要證③,只要證:④

  顯然④是成立的,當(dāng)且僅當(dāng)a=b時(shí),④中的等號(hào)成立,這樣就又一次得到了基本不等式。

 。ù颂幰蕴羁盏男问,突出體現(xiàn)了分析法證明的關(guān)鍵步驟,意在把思維的時(shí)空切實(shí)留給學(xué)生,讓學(xué)生在探究的基礎(chǔ)上去體會(huì)分析法的證明思路,加大了證明基本不等式的探究力度)

 。酆献魈骄浚

  老師用投影儀給出下列問題。

  如圖,AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),AC=a,BC=b。過點(diǎn)C作垂直于AB的弦DD′,連結(jié)AD、BD。你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?

 。ū竟(jié)課開展到這里,學(xué)生從基本不等式的證明過程中已體會(huì)到證明不等式的常用方法,對(duì)基本不等式也已經(jīng)很熟悉,這就具備了探究這個(gè)問題的知識(shí)與情感基礎(chǔ))

 。酆献魈骄浚

  師 同學(xué)們能找出圖中與a、b有關(guān)的線段嗎?

  生 可證△ACD ∽△BCD,所以可得。

  生 由射影定理也可得。

  師 這兩位同學(xué)回答得都很好,那ab與分別又有什么幾何意義呢?

  生表示半弦長(zhǎng),表示半徑長(zhǎng)。

  師 半徑和半弦又有什么關(guān)系呢?

  生 由半徑大于半弦可得。

  師 這位同學(xué)回答得是否很嚴(yán)密?

  生 當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即當(dāng)a=b時(shí)可取等號(hào),所以也可得出基本不等式 (a>0,b>0)。

  課堂小結(jié)

  師 本節(jié)課我們研究了哪些問題?有什么收獲?

  生 我們通過觀察分析第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo)得出了不等式a2+b2≥2ab。

  生 由a2+b2≥2ab,當(dāng)a>0,b>0時(shí),以、分別代替a、b,得到了基本不等式 (a>0,b>0)。進(jìn)而用不等式的性質(zhì),由結(jié)論到條件,證明了基本不等式。

  生 在圓這個(gè)幾何圖形中我們也能得到基本不等式。

  (此處,創(chuàng)造讓學(xué)生進(jìn)行課堂小結(jié)的機(jī)會(huì),目的是培養(yǎng)學(xué)生語言表達(dá)能力,也有利于課外學(xué)生歸納、總結(jié)等學(xué)習(xí)方法、能力的提高)

  師 大家剛才總結(jié)得都很好,本節(jié)課我們從實(shí)際情景中抽象出基本不等式。并采用數(shù)形結(jié)合的思想,賦予基本不等式幾何直觀,讓大家進(jìn)一步領(lǐng)悟到基本不等式成立的條件是a>0,b>0,及當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立。在對(duì)不等式的證明過程中,體會(huì)到一些證明不等式常用的思路、方法。以后,同學(xué)們要注意數(shù)形結(jié)合的思想在解題中的靈活運(yùn)用。

  布置作業(yè)

  活動(dòng)與探究:已知a、b都是正數(shù),試探索, ,,的大小關(guān)系,并證明你的結(jié)論。

  分析:(方法一)由特殊到一般,用特殊值代入,先得到表達(dá)式的大小關(guān)系,再由不等式及實(shí)數(shù)的性質(zhì)證明。

 。ǚ椒ǘ﹦(chuàng)設(shè)幾何直觀情景。設(shè)AC=a,BC=b,用a、b表示線段CE、OE、CD、DF的長(zhǎng)度,由CE>OE>CD>DF可得。

  板書設(shè)計(jì)

  基本不等式的證明

  一、實(shí)際情景引入得到重要不等式

  a2+b2≥2ab

  二、定理

  若a>0,b>0

  課后作業(yè):

  證明過程探索:

不等式的證明教案3

  一、教學(xué)目標(biāo)

  1、掌握分析法證明不等式;

  2、理解分析法實(shí)質(zhì)??執(zhí)果索因;

  3、提高證明不等式證法靈活性.

  二、教學(xué)重點(diǎn)

  分析法

  三、教學(xué)難點(diǎn)

  分析法實(shí)質(zhì)的理解

  四、教學(xué)方法

  啟發(fā)引導(dǎo)式

  五、教學(xué)活動(dòng)

  (一)導(dǎo)入新課

 。ń處熁顒(dòng))教師提出問題,待學(xué)生回答和思考后點(diǎn)評(píng)、

 。▽W(xué)生活動(dòng))回答和思考教師提出的問題、

 。蹎栴}1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?

  [問題2]能否用比較法或綜合法證明不等式:

  [點(diǎn)評(píng)]在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法、(板書課題)

  設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法、指出用比較法和綜合法證明不等式的不足之處,

  激發(fā)學(xué)生學(xué)習(xí)新的證明不等式知識(shí)的積極性,導(dǎo)入本節(jié)課學(xué)習(xí)內(nèi)容:用分析法證明不等式、

 。ǘ┬抡n講授

  嘗試探索、建立新知:

 。ń處熁顒(dòng))教師講解綜合法證明不等式的邏輯關(guān)系,然后提出問題供學(xué)生研究,并點(diǎn)評(píng)、幫助學(xué)生建立分析法證明不等式的知識(shí)體系、投影分析法證明不等式的概念、

 。▽W(xué)生活動(dòng))與教師一道分析綜合法的邏輯關(guān)系,在教師啟發(fā)、引導(dǎo)下嘗試探索,構(gòu)建新知、

  [講解]綜合法證明不等式的邏輯關(guān)系:以已知條件中的不等式或基本不等式作為結(jié)論,逐步尋找它成立的必要條件,直到必要條件就是要證明的`不等式、

 。蹎栴}1]我們能不能用同樣的思考問題的方式,把要證明的不等式作為結(jié)論,逐步去尋找它成立的充分條件呢?

 。蹎栴}2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時(shí),說明了什么呢?

 。蹎栴}3]說明要證明的不等式成立的理由是什么呢?

 。埸c(diǎn)評(píng)]從要證明的結(jié)論入手,逆求使它成立的充分條件,直到充分條件顯然成立為止,從而得出要證明的結(jié)論成立、就是分析法的邏輯關(guān)系、

  [投影]分析法證明不等式的概念、(見課本)

  設(shè)計(jì)意圖:對(duì)比綜合法的邏輯關(guān)系,教師層層設(shè)置問題,激發(fā)學(xué)生積極思考、研究、建立新的知識(shí);分析法證明不等式、培養(yǎng)學(xué)習(xí)創(chuàng)新意識(shí)、

  例題示范、學(xué)會(huì)應(yīng)用:

 。ń處熁顒(dòng))教師板書或投影例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)用分析法證明不等式,并點(diǎn)評(píng)用分析法證明不等式必須注意的問題、

 。▽W(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證、

不等式的證明教案4

  教學(xué)目標(biāo)

  1.掌握分析法證明不等式;

  2.理解分析法實(shí)質(zhì)——執(zhí)果索因;

  3.提高證明不等式證法靈活性.

  教學(xué)重點(diǎn)分析法

  教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解

  教學(xué)方法啟發(fā)引導(dǎo)式

  教學(xué)活動(dòng)

  (一)導(dǎo)入新課

 。ń處熁顒(dòng))教師提出問題,待學(xué)生回答和思考后點(diǎn)評(píng).

  (學(xué)生活動(dòng))回答和思考教師提出的問題.

 。蹎栴}1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?

 。蹎栴}2]能否用比較法或綜合法證明不等式:

  [點(diǎn)評(píng)]在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書課題)

  設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,激發(fā)學(xué)生學(xué)習(xí)新的證明不等式知識(shí)的積極性,導(dǎo)入本節(jié)課學(xué)習(xí)內(nèi)容:用分析法證明不等式.

 。ǘ┬抡n講授

  【嘗試探索、建立新知】

 。ń處熁顒(dòng))教師講解綜合法證明不等式的邏輯關(guān)系,然后提出問題供學(xué)生研究,并點(diǎn)評(píng).幫助學(xué)生建立分析法證明不等式的知識(shí)體系.投影分析法證明不等式的概念.

  (學(xué)生活動(dòng))與教師一道分析綜合法的邏輯關(guān)系,在教師啟發(fā)、引導(dǎo)下嘗試探索,構(gòu)建新知.

  [講解]綜合法證明不等式的邏輯關(guān)系:以已知條件中的不等式或基本不等式作為結(jié)論,逐步尋找它成立的必要條件,直到必要條件就是要證明的不等式.

 。蹎栴}1]我們能不能用同樣的思考問題的方式,把要證明的不等式作為結(jié)論,逐步去尋找它成立的充分條件呢?

  [問題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時(shí),說明了什么呢?

 。蹎栴}3]說明要證明的不等式成立的理由是什么呢?

 。埸c(diǎn)評(píng)]從要證明的結(jié)論入手,逆求使它成立的充分條件,直到充分條件顯然成立為止,從而得出要證明的結(jié)論成立.就是分析法的邏輯關(guān)系.

  [投影]分析法證明不等式的概念.(見課本)

  設(shè)計(jì)意圖:對(duì)比綜合法的邏輯關(guān)系,教師層層設(shè)置問題,激發(fā)學(xué)生積極思考、研究.建立新的知識(shí);分析法證明不等式.培養(yǎng)學(xué)習(xí)創(chuàng)新意識(shí).

  【例題示范、學(xué)會(huì)應(yīng)用】

 。ń處熁顒(dòng))教師板書或投影例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)用分析法證明不等式,并點(diǎn)評(píng)用分析法證明不等式必須注意的問題.

 。▽W(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題,與教師一道完成問題的論證.

  例1求證

  [分析]此題用比較法和綜合法都很難入手,應(yīng)考慮用分析法.

  證明:(見課本)

  [點(diǎn)評(píng)]證明某些含有根式的不等式時(shí),用綜合法比較困難.此例中,我們很難想到從“”入手,因此,在不等式的證明中,分析法占有重要的位置,我們常用分析法探索證明途徑,然后用綜合法的形式寫出證明過程,這是解決數(shù)學(xué)問題的一種重要思維方法,事實(shí)上,有些綜合法的表述正是建立在分析法思索的基礎(chǔ)上,分析法的優(yōu)越性正體現(xiàn)在此.

  例2已知:,求證:(用分析法)請(qǐng)思考下列證法有沒有錯(cuò)誤?若有錯(cuò)誤,錯(cuò)在何處?

 。弁队埃葑C法一:因?yàn)椋、去分母,化為,就是.由已知成立,所以求證的不等式成立.

  證法二:欲證,因?yàn)?/p>

  只需證,即證,即證

  因?yàn)槌闪,所以成立?/p>

 。ㄗC法二正確,證法一錯(cuò)誤.錯(cuò)誤的原因是:雖然是從結(jié)論出發(fā),但不是逐步逆戰(zhàn)結(jié)論成立的充分條件,事實(shí)上找到明顯成立的不等式是結(jié)論的必要條件,所以不符合分析法的邏輯原理,犯了邏輯上的錯(cuò)誤.)

  [點(diǎn)評(píng)]①用分析法證明不等式的邏輯關(guān)系是:

  (結(jié)論)(步步尋找不等式成立的充分條件)(結(jié)論)

  分析法是“執(zhí)果索因”,它與綜合法的證明過程(由因?qū)Ч┣∏∠喾矗谟梅治龇ㄗC明時(shí)要注意書寫格式.分析法論證“若A則B”這個(gè)命題的書寫格式是:

  要證命題B為真,只需證明為真,從而有……

  這只需證明為真,從而又有……

  ……

  這只需證明A為真.

  而已知A為真,故命題B必為真.

  要理解上述格式中蘊(yùn)含的邏輯關(guān)系.

  [投影]例3證明:通過水管放水,當(dāng)流速相同時(shí),如果水管截面(指橫截面,下同)的周長(zhǎng)相等,那么截面是圓的水管比截面是正方形的水管流量大.

 。鄯治觯菰O(shè)未知數(shù),列方程,因?yàn)楫?dāng)水的流速相同時(shí),水管的流量取決于水管截面面積的大小,設(shè)截面的周長(zhǎng)為,則周長(zhǎng)為的圓的半徑為,截面積為;周長(zhǎng)為的正方形邊長(zhǎng)為,截面積為,所以本題只需證明:

  證明:(見課本)

  設(shè)計(jì)意圖:理解分析法與綜合法的內(nèi)在聯(lián)系,說明分析法在證明不等式中的重要地位.掌

  握分析法證明不等式,特別重視分析法證題格式及格式中蘊(yùn)含的邏輯關(guān)系.靈活掌握分析法的應(yīng)用,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.

  【課堂練習(xí)】

  (教師活動(dòng))打出字幕(練習(xí)),請(qǐng)甲、乙兩位同學(xué)板演,巡視學(xué)生的解題情況,對(duì)正確的證法給予肯定,對(duì)偏差及時(shí)糾正.點(diǎn)評(píng)練習(xí)中存在的問題.

  (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.

  【字幕】練習(xí)1.求證

  2.求證:

  設(shè)計(jì)意圖:掌握用分析法證明不等式,反饋課堂效果,調(diào)節(jié)課堂教學(xué).

  【分析歸納、小結(jié)解法】

 。ń處熁顒(dòng))分析歸納例題和練習(xí)的解題過程,小給用分析法證明不等式的'解題方法.

 。▽W(xué)生活動(dòng))與教師一道分析歸納,小結(jié)解題方法,并記錄筆記.

  1.分析法是證明不等式的一種常用基本方法.當(dāng)證題不知從何入手時(shí),有時(shí)可以運(yùn)用分析法而獲得解決,特別是對(duì)于條件簡(jiǎn)單而結(jié)論復(fù)雜的題目往往更是行之有效的.

  2.用分析法證明不等式時(shí),要正確運(yùn)用不等式的性質(zhì)逆找充分條件,注意分析法的證題格式.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握分析法證明不等式的方法.

 。ㄈ┬〗Y(jié)

 。ń處熁顒(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí).

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.

  本節(jié)課主要學(xué)習(xí)了用分析法證明不等式.應(yīng)用分析法證明不等式時(shí),掌握一些常用技巧:

  通分、約分、多項(xiàng)式乘法、因式分解、去分母,兩邊乘方、開方等.在使用這些技巧變形時(shí),要注意遵循不等式的性質(zhì).另外還要適當(dāng)掌握指數(shù)、對(duì)數(shù)的性質(zhì)、三角公式在逆推中的靈活運(yùn)用.理解分析法和綜合法是對(duì)立統(tǒng)一的兩個(gè)方面.有時(shí)可以用分析法思索,而用綜合法書寫證明,或者分析法、綜合法相結(jié)合,共同完成證明過程.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí).

 。ㄋ模┎贾米鳂I(yè)

  1.課本作業(yè):P174、5.

  2.思考題:若,求證

  3.研究性題:已知函數(shù),若、,且證明

  設(shè)計(jì)意圖:思考題供學(xué)有余力同學(xué)練習(xí),研究性題供學(xué)生研究分析法證明有關(guān)問題.

 。ㄎ澹┱n后點(diǎn)評(píng)

  教學(xué)過程是不斷發(fā)現(xiàn)問題、解決問題的思維過程.本節(jié)課在形成分析法證明不等式認(rèn)知結(jié)構(gòu)中,教師提出問題或引導(dǎo)學(xué)生發(fā)現(xiàn)問題,然后開拓學(xué)生思路,啟迪學(xué)生智慧,求得問題解決.一個(gè)問題解決后,及時(shí)地提出新問題,提高學(xué)生的思維層次,逐步由特殊到一般,由具體到抽象,由表面到本質(zhì),把學(xué)生的思維步步引向深入,直到完成本節(jié)課的教學(xué)任務(wù).總之,本節(jié)課的教學(xué)安排是讓學(xué)生的思維由問題開始,到問題深化,始終處于積極主動(dòng)狀態(tài).

  本節(jié)課練中有講,講中有練,講練結(jié)合.在講與練的互相作用下,使學(xué)生的思維逐步深化.教師提出的問題和例題,先由學(xué)生自己研究,然后教師分析與概括.在教師講解中,又不斷讓學(xué)生練習(xí),力求在練習(xí)中加深理解,盡量改變課堂上教師包括辦代替的做法.

  在安排本節(jié)課教學(xué)內(nèi)容時(shí),按認(rèn)識(shí)規(guī)律,由淺入深,由易及難,逐漸展開教學(xué)內(nèi)容,讓學(xué)生形成有序的知識(shí)結(jié)構(gòu).

  作業(yè)答案:

  思考題:

  因?yàn)椋,所以成立?/p>

  研究性題:令,則:

  故原不等式等價(jià)于

  由已知有xxx。所以上式等價(jià)于,即。所以又等價(jià)于.因?yàn),上式成立,所以原不等式成立?/p>

  不等式的實(shí)際解釋

  題目:不等式:是正數(shù),且,則。可以給出一個(gè)具有實(shí)際背景的解釋:在溶液里加溶質(zhì)則濃度增加,即個(gè)單位溶液中含有個(gè)單位的溶質(zhì),其濃度小于加入個(gè)單位溶質(zhì)后的溶液濃度,請(qǐng)你仿照此例,給出兩個(gè)不等式的解釋。

  分析與解

  1.先看問題中的不等式,建筑學(xué)規(guī)定,民用住宅的窗戶面積必須小于地板面積,但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,并且這個(gè)比值越大,住宅的采光條件越好。我們知道如果同時(shí)增加相等的窗戶面積和地板面積,那么住宅的條件變好。

  設(shè)地板面積為平方米,窗戶面積為平方米,若窗戶面積和地板面積同時(shí)增加相等的平方米,住宅的采光條件變好了,即有

  2.是正數(shù),不等式可以推出,我們可以用混合溶液來解釋:兩個(gè)不同濃度的溶液混合后,其濃度介于混合前兩溶液濃度之間。

  3.電阻串并聯(lián)。電阻值為、的電阻,串聯(lián)電阻為,并聯(lián)電阻為,串聯(lián)電阻變大,并聯(lián)電阻變小,因此有不等式,即

  說明許多數(shù)學(xué)結(jié)論是由實(shí)際問題抽象為數(shù)學(xué)問題后,通過數(shù)學(xué)的運(yùn)算演變得到的。反過來,把抽象的數(shù)學(xué)結(jié)論還原為實(shí)際解釋也是一種數(shù)學(xué)運(yùn)用,值得大家關(guān)注。

不等式的證明教案5

  教學(xué)目標(biāo):

  1.進(jìn)一步熟練掌握比較法證明不等式;

  2.了解作商比較法證明不等式;

  3.提高學(xué)生解題時(shí)應(yīng)變能力.

  教學(xué)重點(diǎn)

  比較法的應(yīng)用

  教學(xué)難點(diǎn)

  常見解題技巧

  教學(xué)方法啟發(fā)引導(dǎo)式

  教學(xué)活動(dòng)

 。ㄒ唬⿲(dǎo)入新課

 。ń處熁顒(dòng))教師打出字幕(復(fù)習(xí)提問),請(qǐng)三位同學(xué)回答問題,教師點(diǎn)評(píng).

 。▽W(xué)生活動(dòng))思考問題,回答.

 。圩帜唬1.比較法證明不等式的步驟是怎樣的?

  2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?

  3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對(duì)式子的變形還有其它方法嗎?

  [點(diǎn)評(píng)]用比較法證明不等式步驟中,關(guān)鍵是對(duì)差式的變形.在我們所學(xué)的知識(shí)中,對(duì)式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學(xué)習(xí)比較法證明不等式,積累對(duì)差式變形的常用方法和比較法思想的應(yīng)用.(板書課題)

  設(shè)計(jì)意圖:復(fù)習(xí)鞏固已學(xué)知識(shí),銜接新知識(shí),引入本節(jié)課學(xué)習(xí)的內(nèi)容.

 。ǘ┬抡n講授

  【嘗試探索,建立新知】

 。ń處熁顒(dòng))提出問題,引導(dǎo)學(xué)生研究解決問題,并點(diǎn)評(píng).

  (學(xué)生活動(dòng))嘗試解決問題.

  [問題]

  1.化簡(jiǎn)

  2.比較與()的大。

  (學(xué)生解答問題)

 。埸c(diǎn)評(píng)]

 、賳栴}1,我們采用了因式分解的方法進(jìn)行簡(jiǎn)化.

  ②通過學(xué)習(xí)比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來比較兩個(gè)式子的大。

  設(shè)計(jì)意圖:?jiǎn)l(fā)學(xué)生研究問題,建立新知,形成新的知識(shí)體系.

  【例題示范,學(xué)會(huì)應(yīng)用】

 。ń處熁顒(dòng))教師打出字幕(例題),引導(dǎo)、啟發(fā)學(xué)生研究問題,井點(diǎn)評(píng)解題過程.

  (學(xué)生活動(dòng))分析,研究問題.

 。圩帜唬堇}3已知 a b 是正數(shù),且,求證

  [分析]依題目特點(diǎn),作差后重新組項(xiàng),采用因式分解來變形.

  證明:(見課本)

 。埸c(diǎn)評(píng)]因式分解也是對(duì)差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號(hào)中,表達(dá)過程較復(fù)雜,如何書寫證明過程,例3給出了一個(gè)好的示范.

 。埸c(diǎn)評(píng)]解這道題在判斷符號(hào)時(shí)用了分類討論,分類討論是重要的數(shù)學(xué) 思想方法.要理解為什么分類,怎樣分類.分類時(shí)要不重不漏.

  [字幕]例5甲、乙兩人同時(shí)同地沿同一條路線走到同一地點(diǎn).甲有一半時(shí)間以速度 m 行走,另一半時(shí)間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達(dá)指定地點(diǎn).

  [分析]設(shè)從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問題,只要比較、的大小就可以了.

  解:(見課本)

  [點(diǎn)評(píng)]此題是一個(gè)實(shí)際問題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì).

  設(shè)計(jì)意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號(hào)的方法.培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力.

  【課堂練習(xí)】

 。ń處熁顒(dòng))教師打出字幕練習(xí),要求學(xué)生獨(dú)立思考,完成練習(xí);請(qǐng)甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的給予肯定,對(duì)偏差及時(shí)糾正;點(diǎn)評(píng)練習(xí)中存在的問題.

 。▽W(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.

 。圩帜唬菥毩(xí):1.設(shè),比較與的大。

  2.已知,求證

  設(shè)計(jì)意圖:掌握比較法證明不等式及思想方法的應(yīng)用.靈活掌握因式分解法對(duì)差式的變形和分類討論確定符號(hào).反饋信息,調(diào)節(jié)課堂教學(xué).

  【分析歸納、小結(jié)解法】

  (教師活動(dòng))分析歸納例題的解題過程,小結(jié)對(duì)差式變形、確定符號(hào)的常用方法和利用不等式解決實(shí)際問題的解題步驟.

  (學(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上.

  1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法.

  2.對(duì)差式變形的常用方法有:配方法,通分法,因式分解法等.

  3.會(huì)用分類討論的方法確定差式的符號(hào).

  4.利用不等式解決實(shí)際問題的解題步驟:①類比列方程解應(yīng)用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的知識(shí)體系.

 。ㄈ┬〗Y(jié)

 。ń處熁顒(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí)及數(shù)學(xué) 思想與方法.

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.

  本節(jié)課學(xué)習(xí)了對(duì)差式變形的.一種常用方法因式分解法;對(duì)符號(hào)確定的分類討論法;應(yīng)用比較法的思想解決實(shí)際問題.

  通過學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡(jiǎn)化是比較法證明不等式中所蘊(yùn)含的重要數(shù)學(xué)思想,掌握求差后對(duì)差式變形以及判斷符號(hào)的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)的知識(shí),領(lǐng)會(huì)化歸、類比、分類討論的重要數(shù)學(xué) 思想方法.

  (四)布置作業(yè)

  1.課本作業(yè):P17 7、8。

  2,思考題:已知,求證

  3.研究性題:對(duì)于同樣的距離,船在流水中來回行駛一次的時(shí)間和船在靜水中來回行駛一次的時(shí)間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)

  設(shè)計(jì)意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數(shù)學(xué)解決實(shí)際問題,提高應(yīng)用數(shù)學(xué)的能力.

 。ㄎ澹┱n后點(diǎn)評(píng)

  1.教學(xué)評(píng)價(jià)、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,解決問題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動(dòng).

  2.教學(xué)措施的設(shè)計(jì):由于對(duì)差式變形,確定符號(hào)是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號(hào)的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號(hào),例5使學(xué)生對(duì)所學(xué)的知識(shí)會(huì)應(yīng)用.例題設(shè)計(jì)目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì)應(yīng)用

不等式的證明教案6

  教學(xué)目標(biāo)

 。1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義;

  (2)掌握用比較法、綜合法和分析法來證簡(jiǎn)單的不等式;

  (3)能靈活根據(jù)題目選擇適當(dāng)?shù)刈C明方法來證不等式;

  (4)能用不等式證明的方法解決一些實(shí)際問題,培養(yǎng)學(xué)生分析問題、解決問題的能力;

 。6)通過不等式證明,培養(yǎng)學(xué)生邏輯推理論證的能力和抽象思維能力;

 。7)通過組織學(xué)生對(duì)不等式證明方法的意義和應(yīng)用的參與,培養(yǎng)學(xué)生勤于思考、善于思考的良好學(xué)習(xí)習(xí)慣.

  教學(xué)建議

 。ㄒ唬┙滩姆治

  1.知識(shí)結(jié)構(gòu)

  2.重點(diǎn)、難點(diǎn)分析

  重點(diǎn):不等式證明的主要方法的意義和應(yīng)用;

  難點(diǎn):①理解分析法與綜合法在推理方向上是相反的;

 、诰C合性問題選擇適當(dāng)?shù)淖C明方法.

 。1)不等式證明的意義

  不等式的證明是要證明對(duì)于滿足條件的所有數(shù)都成立(或都不成立),而并非是帶入具體的數(shù)值去驗(yàn)證式子是否成立.

 。2)比較法證明不等式的分析

  ①在證明不等式的各種方法中,比較法是最基本、最重要的方法.

 、谧C明不等式的比較法,有求差比較法和求商比較法兩種途徑.

  由于,因此,證明,可轉(zhuǎn)化為證明與之等價(jià)的.這種證法就是求差比較法.

  由于當(dāng)時(shí),,因此,證明 可以轉(zhuǎn)化為證明與之等價(jià)的 .這種證法就是求商比較法,使用求商比較法證明不等式時(shí),一定要注意的前提條件.

 、矍蟛畋容^法的基本步驟是:“作差——變形——斷號(hào)”.

  其中,作差是依據(jù),變形是手段,判斷符號(hào)才是目的.

  變形的目的全在于判斷差的符號(hào),而不必考慮差值是多少.

  變形的方法一般有配方法、通分的方法和因式分解的方法等,為此,有時(shí)把差變形為一個(gè)常數(shù),或者變形為一個(gè)常數(shù)與一個(gè)或幾個(gè)數(shù)的平方和的形式.或者變形為一個(gè)分式,或者變形為幾個(gè)因式的積的形式等. 總之.能夠判斷出差的符號(hào)是正或負(fù)即可.

 、茏魃瘫容^法的基本步驟是:“作商——變形——判斷商式與1的大小關(guān)系”,需要注意的是,作商比較法一般用于不等號(hào)兩側(cè)的式子同號(hào)的不等式的證明.

 。3)綜合法證明不等式的分析

  ①利用某些已經(jīng)證明過的不等式和不等式的性質(zhì)推倒出所要證明的不等式成立,這種證明方法通常叫做綜合法.

 、诰C合法的思路是“由因?qū)Ч保簭囊阎牟坏仁匠霭l(fā),通過一系列的推出變換,推倒出求證的不等式.

 、劬C合法證明不等式的邏輯關(guān)系是:

  ….

  (已知)(逐步推演不等式成立的必要條件)(結(jié)論)

 、芾镁C合法由因?qū)ЧC明不等式,就要揭示出條件與結(jié)論之間的因果關(guān)系,為此要著力分析已知與求證之間的差異和聯(lián)系、不等式左右兩端的差異和聯(lián)系,在分析所證不等式左右兩端的差異后,合理應(yīng)用已知條件,進(jìn)行有效的變換是證明不等式的關(guān)鍵.

 。4)分析法證明不等式的分析

 、購那笞C的不等式出發(fā),逐步尋求使不等式成立的充分條件,直至所需條件被確認(rèn)成立,就斷定求證的不等式成立,這種證明方法就是分析法.

  有時(shí),我們也可以首先假定所要證明的不等式成立,逐步推出一個(gè)已知成立的不等式,只要這個(gè)推出過程中的每一步都是可以逆推的,那么就可以斷定所給的不等式成立.這也是用分析法,注意應(yīng)強(qiáng)調(diào)“以上每一步都可逆”,并說出可逆的根據(jù).

 、诜治龇ǖ乃悸肥恰皥(zhí)果導(dǎo)因”:從求證的不等式出發(fā),探索使結(jié)論成立的充分條件直至已成立的不等式.它與綜合法是對(duì)立統(tǒng)一的兩種方法.

 、塾梅治龇ㄗC明不等式的邏輯關(guān)系是:

  ….

 。ㄒ阎ㄖ鸩酵蒲莶坏仁匠闪⒌谋匾獥l件)(結(jié)論)

  ④分析法是教學(xué)中的一個(gè)難點(diǎn),一是難在初學(xué)時(shí)不易理解它的本質(zhì)是從結(jié)論分析出使結(jié)論成立的“充分”條件,二是不易正確使用連接有關(guān)(分析推理)步驟的關(guān)鍵詞.如“為了證明”“只需證明”“即”以及“假定……成立”等.

 、莘治龇ㄊ亲C明不等式時(shí)一種常用的基本方法.當(dāng)證明不知從何入手時(shí),有時(shí)可以運(yùn)用分析法而獲得解決.特別對(duì)于條件簡(jiǎn)單而結(jié)論復(fù)雜的題目往往更是行之有效.

  (5)關(guān)于分析法與綜合法

 、俜治龇ㄅc綜合法是思維方向相反的兩種思考方法.

  ②在數(shù)學(xué)解題中,分析法是從數(shù)學(xué)題的待證結(jié)論或需求問題出發(fā),一步一步地探索下去,最后達(dá)到題設(shè)的已知條件.即推理方向是:結(jié)論已知.

  綜合法則是從數(shù)學(xué)題的已知條件出發(fā),經(jīng)過逐步的邏輯推理,最后達(dá)到待證結(jié)論或需求問題.即:已知結(jié)論.

 、鄯治龇ǖ奶攸c(diǎn)是:從“結(jié)論”探求“需知”,逐步靠攏“已知”,其逐步推理實(shí)際上是要尋找結(jié)論的充分條件.

  綜合法的特點(diǎn)是:從“已知”推出“可知”,逐步推向“未知”,其逐步推理實(shí)際上是要尋找已知的必要條件.

 、芨饔衅鋬(yōu)缺點(diǎn):

  從尋求解題思路來看:分析法是執(zhí)果索因,利于思考,方向明確,思路自然,有希望成功;綜合法由因?qū)Ч,往往枝?jié)橫生,不容易達(dá)到所要證明的結(jié)論.

  從書寫表達(dá)過程而論:分析法敘述繁鎖,文辭冗長(zhǎng);綜合法形式簡(jiǎn)潔,條理清晰.

  也就是說,分析法利于思考,綜合法宜于表達(dá).

 、菀话銇碚f,對(duì)于較復(fù)雜的不等式,直接運(yùn)用綜合法往往不易入手,用分析法來書寫又比較麻煩.因此,通常用分析法探索證題途徑,然后用綜合法加以證明,所以分析法和綜合法經(jīng)常是結(jié)合在一起使用的.

 。ǘ┙谭ńㄗh

  ①選擇例題和習(xí)題要注意層次性.

  不等式證明的三種方法主要是通過例題來說明的.教師在教學(xué)中要注意例題安排要由易到難,由簡(jiǎn)單到綜合,層層深入,啟發(fā)學(xué)生理解各種證法的意義和邏輯關(guān)系.教師選擇的訓(xùn)練題也要與所講解的例題的難易程度的層次相當(dāng).

  要堅(jiān)持精講精練的原則.通過一題多法和多變挖掘各種方法的內(nèi)在聯(lián)系,對(duì)知識(shí)進(jìn)行拓展、延伸,使學(xué)生溝通知識(shí),有效地提高解題能力.

 、谠教學(xué)過程中,應(yīng)通過精心設(shè)置的一個(gè)個(gè)問題,激發(fā)學(xué)生的求知欲,調(diào)動(dòng)學(xué)生在課堂活動(dòng)中積極參與.

  通過學(xué)生參與教學(xué)活動(dòng),理解不等式證明方法的實(shí)質(zhì)和幾種證明方法的意義,通過訓(xùn)練積累經(jīng)驗(yàn),能夠總結(jié)出比較法的.實(shí)質(zhì)是把實(shí)數(shù)的大小順序通過實(shí)數(shù)運(yùn)算變成一個(gè)數(shù)與0(或1)比較大小;復(fù)雜的習(xí)題能夠利用綜合法發(fā)展條件向結(jié)論方向轉(zhuǎn)化,利用分析法能夠把結(jié)論向條件靠攏,最終達(dá)到結(jié)合點(diǎn),從而解決問題.

 、蹖W(xué)生素質(zhì)較好的,教師可在教學(xué)中適當(dāng)增加反證法和用函數(shù)單調(diào)性來證明不等式的內(nèi)容,但內(nèi)容不易過多過難.

  第一課時(shí)

  教學(xué)目標(biāo)

  1.掌握證明不等式的方法——比較法;

  2.熟悉并掌握比較法證明不等式的意義及基本步驟.

  教學(xué)重點(diǎn) 比較法的意義和基本步驟.

  教學(xué)難點(diǎn) 常見的變形技巧.

  教學(xué)方法 啟發(fā)引導(dǎo)式.

  教學(xué)過程

  (-)導(dǎo)入新課

 。ń處熁顒(dòng))教師提問:根據(jù)前一節(jié)學(xué)過的知識(shí),我們?nèi)绾斡脤?shí)數(shù)運(yùn)算來比較兩個(gè)實(shí)數(shù)與的大。浚

 。▽W(xué)生活動(dòng))學(xué)生思考問題,找學(xué)生甲口答問題.

 。▽W(xué)生甲回答:,,,)

 。埸c(diǎn)評(píng)](待學(xué)生回答問題后)要比較兩個(gè)實(shí)數(shù)與的大小,只要考察與的差值的符號(hào)就可以了,這種證明不等式的方法稱為比較法.現(xiàn)在我們就來學(xué)習(xí):用比較法證明不等式.(板書課題)

  設(shè)計(jì)意圖:通過教師設(shè)置問題,引導(dǎo)學(xué)生回憶所學(xué)的知識(shí),引出用比較法證明不等式,導(dǎo)入本節(jié)課學(xué)習(xí)的知識(shí).

 。ǘ┬抡n講授

  【嘗試探索,建立新知】

 。ń處熁顒(dòng))教師板書問題(證明不等式),寫出一道例題的題目

  [問題] 求證

  教師引導(dǎo)學(xué)生分析、思考,研究不等式的證明.

 。▽W(xué)生活動(dòng))學(xué)生研究證明不等式,嘗試完成問題.

  (得出證明過程后)

 。埸c(diǎn)評(píng)]

 、偻ㄟ^確定差的符號(hào),證明不等式的成立.這一方法,在前面比較兩個(gè)實(shí)數(shù)的大小、比較式子的大小、證明不等式性質(zhì)就已經(jīng)用過.

 、谕ㄟ^求差將不等問題轉(zhuǎn)化為恒等問題,將兩個(gè)一般式子大小比較轉(zhuǎn)化為一個(gè)一般式子與0的大小比較,使問題簡(jiǎn)化.

 、劾碚撘罁(jù)是:

 、苡,,知:要證明只要證;要證明這種證明不等式的方法通常叫做比較法.

  設(shè)計(jì)意圖:幫助學(xué)生構(gòu)建用比較法證明不等式的知識(shí)體系,培養(yǎng)學(xué)生化歸的數(shù)學(xué)思想.

  【例題示范,學(xué)會(huì)應(yīng)用】

 。ń處熁顒(dòng))教師板書例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)解題過程中的一些常用技巧,并點(diǎn)評(píng).

  例1 求證

 。▽W(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題.與教師一道完成問題的論證.

 。鄯治觯萦杀容^法證題的方法,先將不等式兩邊作差,得,將此式看作關(guān)于的二次函數(shù),由配方法易知函數(shù)的最小值大干零,從而使問題獲證.

  證明:∵

  =

 。剑

  ∴.

 。埸c(diǎn)評(píng)]

  ①作差后是通過配方法對(duì)差式進(jìn)行恒等變形,確定差的符號(hào).

 、谧鞑詈,式于符號(hào)不易確定,配方后變形為一個(gè)完全平方式子與一個(gè)常數(shù)和的形式,使差式的符號(hào)易于確定.

 、鄄坏仁絻蛇叺牟畹姆(hào)是正是負(fù),一般需要利用不等式的性質(zhì)經(jīng)過變形后,才能判斷.

  變形的目的全在于判斷差的符號(hào),而不必考慮差的值是多少.至于怎樣變形,要靈活處理,例1介紹了變形的一種常用方法——配方法.

  例2 已知都是正數(shù),并且,求證:

  [分析]這是分式不等式的證明題,依比較法證題將其作差,確定差的符號(hào),應(yīng)通分,由分子、分母的值的符號(hào)推出差值的符合,從而得證.

  證明:

 。

 。剑

  因?yàn)槎际钦龜?shù),且,所以

 。

  ∴.

  即:

  [點(diǎn)評(píng)]

  ①作差后是通過通分法對(duì)差式進(jìn)行恒等變形,由分子、分母的值的符號(hào)推出差的符號(hào).

 、诒纠}介紹了對(duì)差變形,確定差值的符號(hào)的一種常用方法——通分法.

 、劾2的結(jié)論反映了分式的一個(gè)性質(zhì)(若都是正數(shù).

  1.當(dāng)時(shí),

  2.當(dāng)時(shí),.以后要記。

  設(shè)計(jì)意圖:鞏固用比較法證明不等式的知識(shí),學(xué)會(huì)在用比較法證明不等式中,對(duì)差式變形的常用方法——配方法、通分法.

  【課堂練習(xí)】

 。ń處熁顒(dòng))打出字幕(練習(xí)),要求學(xué)生獨(dú)立思考.完成練習(xí);請(qǐng)甲、乙兩學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的證法給予肯定和鼓勵(lì),對(duì)偏差點(diǎn)撥和糾正;點(diǎn)評(píng)練習(xí)中存在的問題.

  [字幕]

  練習(xí):1.求證

  2.已知,, ,d都是正數(shù),且,求證

 。▽W(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.

  設(shè)計(jì)意圖,掌握用比較法證明不等式,并會(huì)靈活運(yùn)用配方法和通分法變形差式,確定差式符號(hào).反饋課堂教學(xué)效果,調(diào)節(jié)課堂教學(xué).

  【分析歸納、小結(jié)解法】

 。ń虒W(xué)活動(dòng))分析歸納例題和練習(xí)的解題過程,小結(jié)用比較法證明不等式的解題方法.

 。▽W(xué)生活動(dòng))與教師一道分析歸納,小結(jié)解題方法,并記錄筆記.

  比較法是證明不等式的一種最基本、重要的方法.用比較法證明不等式的步驟是:作差、變形、判斷符號(hào).要靈活掌握配方法和通分法對(duì)差式進(jìn)行恒等變形.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的方法.

 。ㄈ┬〗Y(jié)

  (教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí).

 。▽W(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.

  本節(jié)課學(xué)習(xí)了用比較法證明不等式,用比較法證明不等式的步驟中,作差是依據(jù),變形是手段,判斷符號(hào)才是目的.掌握求差后對(duì)差式變形的常用方法:配方法和通分法.并在下節(jié)課繼續(xù)學(xué)習(xí)對(duì)差式變形的常用方法.

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí).

 。ㄋ模┎贾米鳂I(yè)

  1.課本作業(yè):P16.1,2,3.

  2.思考題:已知,求證:

  3.研究性題:設(shè),,都是正數(shù),且,求證:

  設(shè)計(jì)意圖,課本作業(yè)供學(xué)生鞏固基礎(chǔ)知識(shí);思考題供學(xué)有余力的學(xué)生完成,培養(yǎng)其靈活掌握用比較法證明不等式的能力;研究性題是為培養(yǎng)學(xué)生創(chuàng)新意識(shí).

 。ㄎ澹┱n后點(diǎn)評(píng)

  1.本節(jié)課是用比較法證明不等式的第一節(jié)課,在導(dǎo)入新課時(shí),教師提出問題,讓學(xué)生回憶所學(xué)知識(shí)中,是如何比較兩個(gè)實(shí)數(shù)大小的,從而引入用比較法證明不等式.這樣處理合情合理,順理成章.

  2.在建立新知過程中,教師引導(dǎo)學(xué)生分析研究證明不等式,使學(xué)生在嘗試探索過程中形成用比較法證明不等式的感性認(rèn)識(shí).

  3.例1,例2兩道題主要目的在于讓學(xué)生歸綱、總結(jié),求差后對(duì)差式變形、并判斷符號(hào)的方法,以及求差比較法的步驟.在這里如何對(duì)差式變形是難點(diǎn),應(yīng)著重解決.首先讓學(xué)生明確變形目的,減少變形的盲目性;其次是總結(jié)變形時(shí)常用方法,有利于難點(diǎn)的突破.

  4.本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識(shí)必須通過學(xué)生自己一系列思維活動(dòng)完成.教師通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì).

  作業(yè)答實(shí)

  思考題:,又,獲證.

  研究性題:

  .

  所以,

  不等式的證明(一)不等式的證明(一)

【不等式的證明教案】相關(guān)文章:

數(shù)學(xué)不等式的解集教案12-29

高中不等式的教案(通用11篇)12-29

一元二次不等式教案11-19

一元一次不等式教案02-23

不等式教學(xué)反思12-01

不等式的教學(xué)反思11-24

不等式的性質(zhì)教學(xué)反思11-24

不等式組教學(xué)反思01-07

定理與證明教案06-25

基本不等式教學(xué)反思05-06