《方程的意義》的教學(xué)反思(通用23篇)
作為一名優(yōu)秀的人民教師,教學(xué)是重要的任務(wù)之一,借助教學(xué)反思我們可以拓展自己的教學(xué)方式,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編幫大家整理的《方程的意義》的教學(xué)反思,歡迎閱讀與收藏。
《方程的意義》的教學(xué)反思 篇1
學(xué)生是數(shù)學(xué)學(xué)習(xí)的主體,這一理念眾人皆知,但是要真正把這一理念落實到每一節(jié)數(shù)學(xué)課上,還需要一定的毅力和恒心。
今天的數(shù)學(xué)課,是第一單元“方程”的復(fù)習(xí)課。
知識點(diǎn)不多,如果由我?guī)ьI(lǐng)學(xué)生回顧知識,構(gòu)建網(wǎng)絡(luò),在此基礎(chǔ)上再逐題完成練習(xí),肯定能非常順利地完成,但是這樣就不能激發(fā)學(xué)生的興趣,也不能提高學(xué)生各方面的能力了。
為了培養(yǎng)他們自我梳理知識,建構(gòu)知識的能力,我采用了小組合作,輪流講解的方法,把課堂真正地還給他們,讓他們充分地展示自己。
首先,出示了課本上的三道討論題,小組討論。接著確定每道題由哪個小組匯報,需要板書的可以先在黑板上寫好,再確定一個人主講,其余的人可以補(bǔ)充。
第一題,由張子豪一組回答。他們在黑板上畫了方程和等式關(guān)系的集合圖,寫了兩句話:含有未知數(shù)的等式是方程,等式是不含有未知數(shù)的式子。
不等他們講完,浩馬上站起來發(fā)問:X+y=200是方程嗎?
超:等式中也有含未知數(shù)的呀?比如X+4=20里含有未知數(shù),也是等式呀!
第二題,由陳璐一組匯報的。他們一組講的非常得詳細(xì),下面的孩子們不知道從哪里開始補(bǔ)充了?
這時,我就作了一個示范:剛才陳璐給我們講了等式的兩條性質(zhì),非常詳細(xì),但是我可以把這兩個性質(zhì)合并為一段話,等式的兩邊可以同時加、減、乘或除以同一個數(shù),除數(shù)不能為0,所得結(jié)果仍然是等式。
我們在補(bǔ)充別人的發(fā)言時,還可以再一次地強(qiáng)調(diào)一些關(guān)鍵點(diǎn),如解方程時要先寫一個解字,等號要上下對齊,解完方程后一定要檢驗等等。
第三題,由王悅辰一組匯報。這一組能夠把列方程解決實際問題的'步驟詳細(xì)地說清楚。
最后,我做了一個簡單的小結(jié)。在這一單元里,我們認(rèn)識了等式,認(rèn)識了方程,知道了這兩者之間的聯(lián)系和區(qū)別,也學(xué)會了用等式的性質(zhì)去解方程,用列方程的方法去解決一些簡單的實際問題,下面我們就用掌握的這些知識去完成一些練習(xí)。
接著,學(xué)生獨(dú)立完成課本上的練習(xí)1-4題,做完之后,小組合作交流批改,并選一道題匯報。在匯報第3題看圖列方程并解答時,學(xué)生能先分析數(shù)量關(guān)系再列方程,解方程,就連最后的檢驗也說的非常清楚,絲毫不要我做一點(diǎn)補(bǔ)充。
一節(jié)課下來,該做的練習(xí)做完了,也不需要留到課后去完成了;學(xué)生的自學(xué)能力和語言表達(dá)能力也得到鍛煉了;而我,也比較輕松,可以把更多的精力關(guān)注到上課易走神的那些孩子了。
看來,真的要相信孩子,不是他們做不好,而是我們老師沒有給他們機(jī)會,讓他們鍛煉!
《方程的意義》的教學(xué)反思 篇2
教材比舊教材對方程教學(xué)的要求提高了!斗匠痰囊饬x》是本單元教學(xué)的第一課時,這堂課的概念多,“含有未知數(shù)的等式,叫做方程”“使等式左右兩邊相等的未知數(shù)的值,叫做方程的解”“求未知數(shù)的值的過程,叫做解方程”,而且學(xué)生容易混淆。在教學(xué)設(shè)計時,把“方程的意義”作為教學(xué)的重點(diǎn),而對“方程的解和解方程”概念的教學(xué)想通過學(xué)生的自學(xué)和新舊知識(求未知數(shù)x)的聯(lián)系,讓學(xué)生自己去理解。所以在設(shè)計教學(xué)方案時,重點(diǎn)考慮的是方程意義的教學(xué)。方程意義的教學(xué)目標(biāo)定位是,不僅僅是讓學(xué)生了解方程的概念,能指出哪些是方程;更多思考的是學(xué)生對方程后繼的學(xué)習(xí)和發(fā)展,注重知識的滲透,如:近期的“用字母表示數(shù)”“用方程解應(yīng)用題”、遠(yuǎn)期的解較復(fù)雜方程或方程組時用到的“等式的性質(zhì)”以及“不等式”“集合”知識等。
在課堂教學(xué)中,方程意義的教學(xué)初步達(dá)到了預(yù)期的教學(xué)目標(biāo)。在討論等式和方程的關(guān)系時,學(xué)生能清楚的表達(dá),指出哪些是方程哪些不是方程能說明自己的理由。在知識滲透方面:當(dāng)教師在天平放上未知重量的.物體時,學(xué)生能自覺用字母表示求知數(shù)x+50=200;在左邊放入一個一元硬幣和一個五角硬幣,右邊放一個5克砝碼,天平平衡時,學(xué)生通過爭論用不同的字母表示不同的求和數(shù)x+y=5,學(xué)生自己說明了理由;在討論等式和方程的關(guān)系時,學(xué)生也能自己理解集合圖的含義。由此可見,學(xué)生的潛力是很大的,關(guān)鍵是看教師是否把握了合適的教學(xué)時機(jī)。這堂課上完,還有一個體會就是教學(xué)時間不夠,知識鞏固的時間太少。
方程意義的教學(xué)的練習(xí)足足用了27分鐘!胺匠痰慕夂徒夥匠獭钡慕虒W(xué)因為練習(xí)時間不足,而不到位。課后我一直想“這27分鐘花得是否值得?怎樣處理知識目標(biāo)和發(fā)展目標(biāo)的關(guān)系?”。還有方程意義教學(xué)時天平的演示,一直是我在演示,學(xué)生在看,學(xué)生的自主性不夠,這是我教學(xué)設(shè)計時就有的困惑,但如果讓分小組學(xué)生自己操作,教學(xué)時間會更加不夠。該怎樣解決這個矛盾?我又設(shè)想,對教材作些處理。把“方程的解和解方程”的教學(xué)放到下一課時,剩下的時間,利用學(xué)生頭腦中剛剛建立的天平這一數(shù)學(xué)模型,加強(qiáng)學(xué)生列方程的練習(xí)。這樣處理是否會更好。
《方程的意義》的教學(xué)反思 篇3
《方程的意義》這一課的教學(xué)。難點(diǎn)是區(qū)分“等式”和“方程”,為突破這一難點(diǎn)我這樣設(shè)計了這節(jié)課的教學(xué)過程。
新課前進(jìn)行三分鐘口算。上課開始進(jìn)行簡單的小游戲:把粗細(xì)均勻的直尺橫放在手指上,使直尺平衡。通過這一簡單的小游戲使學(xué)生明白什么是平衡和不平衡,以此使學(xué)生能明白在方程意義教學(xué)過程中什么是相等關(guān)系,天平中的平衡的情況是當(dāng)左右兩邊的重量相等時,緊接著引入了天平的演示。在天平的左右兩邊分邊放置20+30的兩只正方體、50的砝碼,并根據(jù)平衡關(guān)系列出了一個等式,20+30=50;接著把其中一個30只轉(zhuǎn)換了一個方向,但是30的標(biāo)記是一個“?”天平仍是平衡狀態(tài)。得出另一個等式20+?=50,標(biāo)有?的再轉(zhuǎn)換一個方向后上面標(biāo)的是x,天平仍保持平衡狀態(tài),由此又可以寫出一個等式20+x=50。整個過程注重引導(dǎo)學(xué)生通過演示、觀察、思考、比較、概括等一系列活動,由淺入深,分層推進(jìn),逐步得出“等式―含有未知數(shù)的等式―方程”。雖然整個教學(xué)任務(wù)是完成了。但從學(xué)生的練習(xí)中我們發(fā)現(xiàn)還有一部分學(xué)生對“等式”和“方程”的關(guān)系還是沒有真正弄清。
教學(xué)反思:
本節(jié)課的設(shè)計充分關(guān)注了學(xué)生已有的知識經(jīng)驗,結(jié)合具體的問題情境,引導(dǎo)學(xué)生通過操作、實驗、分析、比較,歸納出了方程的意義。教學(xué)中教師沒有將等式、方程的概念強(qiáng)加給學(xué)生,而是充分尊重學(xué)生原有知識水平,結(jié)合具體情境,引導(dǎo)學(xué)生分析數(shù)量間的相等關(guān)系,再用含有未知數(shù)X的等式表示出等量關(guān)系,并用天平平衡原理來解釋各數(shù)量之間的相等關(guān)系,使學(xué)生理解等式及方程的意義,尊重了學(xué)生年齡特點(diǎn)和認(rèn)知水平。
教學(xué)中為學(xué)生創(chuàng)設(shè)了多次問題情境,引導(dǎo)學(xué)生獨(dú)立思考和小組合作研究。如用含有字母的式子表示出數(shù)量關(guān)系式,用含有x的等式表示數(shù)量變化情況等。
總之,本節(jié)課從學(xué)生認(rèn)知規(guī)律和知識結(jié)構(gòu)的實際出發(fā),讓他們通過有目的的'交流、討論,主動構(gòu)建自己的認(rèn)知結(jié)構(gòu),一方面調(diào)動了學(xué)生的學(xué)習(xí)熱情,另一方面使學(xué)生借助集體思維,加深對方程意義的認(rèn)識,激發(fā)了學(xué)生的探究欲望,培養(yǎng)了學(xué)生的學(xué)習(xí)興趣。在今后的教學(xué)中:我們還要注意將“等式”和“方程”進(jìn)行直接對比。以使學(xué)生理解和區(qū)分“等式”和“方程”?谒泐}引入鋪墊后,要再回過頭來充分利用。在講完“等式”和“方程”后再回到口算題上,將口算題通過變化由等式到既是等式又是方程,這樣進(jìn)行對比使學(xué)生弄明白“等式”和“方程”的關(guān)系。
《方程的意義》的教學(xué)反思 篇4
本節(jié)課,學(xué)生學(xué)習(xí)積極性非常高,課堂上同學(xué)們積極參與,認(rèn)真思考,提出疑問,順利掌握了方程的定義。上完這節(jié)課我的主要收獲如下:
1、通過天平平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,科學(xué)課上認(rèn)識了天平,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的'主題圖。
2、在教學(xué)過程中,學(xué)生通過觀察和操作得到了很多不同的式子,在得到相關(guān)式子時,直接引導(dǎo)學(xué)生進(jìn)行對比,分別總結(jié)出各自的特征,最后我把方程的式子全部圈了出來,告訴學(xué)生,在數(shù)學(xué)上把這樣的關(guān)系式叫做方程,讓后讓學(xué)生自己總結(jié)方程的概念,學(xué)生們很自然就歸納出這一類式子的特征,總結(jié)出了方程的概念。
3、在學(xué)生總結(jié)出方程的意義之后,自己列方程,并同桌互相檢查,有解決不了的問題全班交流,在交流過程中,學(xué)生對方程的理解偏差和用字母表示數(shù)含糊的知識都暴露了出來,通過指名學(xué)生發(fā)言,學(xué)生在爭論中逐步明白了相關(guān)知識,以前沒問題的學(xué)生也在討論中深化了認(rèn)識。
《方程的意義》的教學(xué)反思 篇5
本節(jié)課,我利用課件進(jìn)行教學(xué),課前展示了一架天平,從學(xué)生認(rèn)識天平平衡的特性導(dǎo)入新課,在新事物面前,學(xué)生學(xué)習(xí)積極性非常高,課堂上同學(xué)們積極參與,認(rèn)真思考,提出疑問,順利掌握了方程的定義。上完這節(jié)課我的主要收獲如下:
1、用天平創(chuàng)設(shè)情境直觀形象,有助學(xué)生理解式子的意思
等式是一個數(shù)學(xué)概念。如果離開現(xiàn)實情境出現(xiàn)含有未知數(shù)的等式,學(xué)生很難體會等式的具體含義。通過天平平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。
2、通過不斷比較,總結(jié)特點(diǎn),讓學(xué)生逐步建立數(shù)學(xué)模型
在對比總結(jié)中認(rèn)識方程的主要特征。在教學(xué)過程中,學(xué)生通過觀察和操作得到了很多不同的式子,在得到相關(guān)式子時,直接引導(dǎo)學(xué)生進(jìn)行對比,分別總結(jié)出各自的特征,最后我把方程的式子全部圈了出來,告訴學(xué)生,在數(shù)學(xué)上把這樣的關(guān)系式叫做方程,讓后讓學(xué)生自己總結(jié)方程的概念,學(xué)生們很自然就歸納出這一類式子的特征,總結(jié)出了方程的概念,在自己的腦海里建立起方程的數(shù)學(xué)模型。
3、數(shù)學(xué)要以學(xué)生的錯誤為資源,讓學(xué)生在反思中加深認(rèn)識
在學(xué)生總結(jié)出方程的意義之后,自己列方程,并同桌互相檢查,有解決不了的問題全班交流,在交流過程中,學(xué)生對方程的理解偏差和用字母表示數(shù)含糊的知識都暴露了出來,通過指名學(xué)生發(fā)言,學(xué)生在爭論中逐步明白了相關(guān)知識,以前沒問題的'學(xué)生也在討論中深化了認(rèn)識。
4、數(shù)學(xué)應(yīng)聯(lián)系生活,強(qiáng)化概念
在建立方程的意義以后,我設(shè)計了根據(jù)情境圖寫出相應(yīng)的方程,并在最后引入生活實例,從中找出不同的方程等題型,體現(xiàn)了層層遞進(jìn),由易到難、學(xué)生參與的很積極,也覺得很有趣。這一過程學(xué)生在生活實際中尋找等量關(guān)系列方程,進(jìn)一步體會方程的意義,加深了對方程概念的理解,同時也為以后運(yùn)用方程知識解決實際問題打下基礎(chǔ)。
這節(jié)課存在的問題:
1、對等式與方程的關(guān)系突出得不夠。對方程的定義中“含有未知數(shù)和等式”這兩個必要的條件強(qiáng)調(diào)不到位,導(dǎo)致學(xué)生在選擇題時有個別學(xué)生把y+24選擇為方程。
2、對學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機(jī)會。
3、自己的課堂語言還不夠準(zhǔn)確、不夠豐富,有待于提高。 經(jīng)常有人說“課堂教學(xué)是一門遺憾的藝術(shù)”,只有不斷的總結(jié),不斷的反思,才有不斷的進(jìn)步,也才能將遺憾降到最低點(diǎn)。
《方程的意義》的教學(xué)反思 篇6
今天的第二節(jié)課,我執(zhí)教了《方程的意義》一課,這是一塊嶄新的知識點(diǎn),是在學(xué)生熟悉了常見的數(shù)量關(guān)系,能夠用字母表示數(shù)的基礎(chǔ)上教學(xué),但理解起來有一定的難度的數(shù)學(xué)教學(xué)過程,首先應(yīng)該是一個讓學(xué)生獲得豐富情感體驗的過程。要讓學(xué)生樂學(xué)、好學(xué),讓學(xué)生在教學(xué)過程中獲得積極的情感體驗,下面就結(jié)合我所執(zhí)教的<<方程的意義>>這節(jié)課,談?wù)勎以诮虒W(xué)中的做法和看法。
回顧我的教學(xué),我認(rèn)為有如下幾個特點(diǎn):
一、設(shè)置情景引導(dǎo),促進(jìn)學(xué)生的`自主學(xué)習(xí)
在執(zhí)教中通過天平的演示:認(rèn)識天平,同學(xué)們說天平的作用、用法。讓他們對天平建立起一個初步的認(rèn)識。
二、合作交流,總結(jié)概括
通過對天平的觀察得出等式的概念,接著應(yīng)讓學(xué)生自己獨(dú)立思考。通過比較等式與方程,以及不等式與方程的不同,得出方程的概念,體現(xiàn)學(xué)生自主學(xué)習(xí)的能力,而不應(yīng)該替學(xué)生很快的說出答案,在將出方程的概念后,應(yīng)該讓學(xué)生通過變式訓(xùn)練明白不僅X可以表示未知數(shù),其他的字母都可表示未知數(shù)。在此教學(xué)過程中,教師應(yīng)充當(dāng)一個導(dǎo)游的角色,站在知識的岔路口,啟發(fā)誘導(dǎo)學(xué)生發(fā)現(xiàn)知識,充分發(fā)揮學(xué)生的學(xué)習(xí)潛能,將有一定難度的問題放到小組中,采用合作交流的方式加以解決,逐步的引導(dǎo)學(xué)生對問題的思考和解決向縱深發(fā)展,有利于培養(yǎng)學(xué)生的傾聽習(xí)慣和合作意識。
三、回歸生活,體會方程
在建立方程的意義以后,設(shè)計了根據(jù)情境圖寫出相應(yīng)的方程,并在最后引入生活實例,從中找出不同的方程。這一過程學(xué)生在生活實際中尋找等量關(guān)系列方程,進(jìn)一步體會方程的意義,加深了對方程概念的理解,同時也為以后運(yùn)用方程知識解決實際問題打下基礎(chǔ)。
從學(xué)生已有的知識儲備來看,他們會用含有字母的式子表示數(shù)量,大多數(shù)學(xué)生知道等式并能舉例,向?qū)W生提供表示天平左右兩邊平衡的問題情境,大部分學(xué)生運(yùn)用算術(shù)方法列式。但是,學(xué)生已有的解決數(shù)學(xué)問題的算術(shù)法解題思路對列方程會造成一定的干擾。對于利用天平解決實際問題較感興趣,但是,要求學(xué)生把看到的生活情境轉(zhuǎn)化成用數(shù)學(xué)語言、用關(guān)系時表示時可能存在困難,對于從各種具體情境中尋找發(fā)現(xiàn)等量關(guān)系并用數(shù)學(xué)的語言表達(dá)則表現(xiàn)出需要老師引導(dǎo)和同伴互助,需要將獨(dú)立思考與合作交流相結(jié)合。
課堂上讓學(xué)生借助于天平平衡與不平衡的現(xiàn)象列出表示等與不等關(guān)系的式子,為進(jìn)一步認(rèn)識等式、不等式提供了觀察的感性材料,然后引導(dǎo)學(xué)生對式子分類,建立等式概念,并舉出新的生活實例進(jìn)行強(qiáng)化。最后引導(dǎo)學(xué)生分析、判斷,明確方程與等式的聯(lián)系與區(qū)別,深化方程的概念。
本節(jié)課從課堂整體來看還可以,有大部分學(xué)生的思維還較清晰、會說;可還有部分學(xué)生不敢說,或者是不知如何表述,或者是表述的不準(zhǔn)確,我想問題的關(guān)鍵是學(xué)生的課堂思維過程的訓(xùn)練有待加強(qiáng),數(shù)學(xué)課堂也應(yīng)該重視學(xué)生“說”的訓(xùn)練,在說的過程中激活學(xué)生的思維,讓學(xué)生在新課程的指引下學(xué)會自主探索,學(xué)得主動,學(xué)得投入。
不足之處還有很多,比如:課件制作的不夠精細(xì),完美!所以應(yīng)用起來不夠方便!
《方程的意義》的教學(xué)反思 篇7
本節(jié)課的重點(diǎn)是理解方程的意義,能正確地判斷一個式子是否是方程。我從學(xué)生已有的知識出發(fā),結(jié)合學(xué)生的認(rèn)知規(guī)律,尋找新舊知識點(diǎn)銜接點(diǎn)。決定打破教材的教學(xué)程序。分以下四個層次展示探究過程:
。ㄒ唬┪蚁瘸鍪疽患芴炱,讓學(xué)生觀察,天平處于平衡狀態(tài),然后,在天平的左邊加兩個砝碼(例:10克、20克),右邊加一個30克的砝碼,讓學(xué)生再次觀察天平仍然處于平衡狀態(tài)。讓學(xué)生初步感知天平左邊的質(zhì)量10+20是30(克),和天平右邊的30克是相等的。然后在平衡的天平左邊仍然放兩個砝碼(例:20克、?克),右邊放一個砝碼(60克),這時天平仍然處于平衡狀態(tài),學(xué)生再次感知天平左右兩邊所放砝碼的質(zhì)量是相等的。不同的是,由具體的.數(shù)量過渡到了未知數(shù)量的參與,這在孩子認(rèn)知思維上又加深了一步。
。ǘ┲貑l(fā)學(xué)生根據(jù)信息表達(dá)題目中數(shù)量間的相等關(guān)系,為正確列出方程打下堅實的基礎(chǔ)。逐個出示課本信息窗的主題圖,首先讓學(xué)生仔細(xì)閱讀信息,引導(dǎo)學(xué)生用文字表述題目中的相等關(guān)系,再鼓勵學(xué)生任意用一個未知數(shù)表示題中的問題,并列出含有未知數(shù)的式子。在這個環(huán)節(jié),速度一定放慢,鼓勵每個學(xué)生都要參與。
。ㄈ⿴燑c(diǎn)撥,像這樣左右兩邊表示的意義一樣,我們可以用等號連接,像這樣的式子,我們給它起個名字叫——等式,而后讓學(xué)生舉出幾個等式的例子。(注意:學(xué)生舉例時,要鼓勵學(xué)生呈現(xiàn)不同的形式。純數(shù)字的等式和含有字母的等式)引導(dǎo)讓學(xué)生對以上等式進(jìn)行分類,學(xué)生很容易把等式分成了兩類,一類是純數(shù)字的等式,另一類是含有字母的等式。通過讀課本學(xué)生明白了:含有字母的等式就叫方程,為了加深學(xué)生對方程的理解,讓每人舉出3個方程,同桌判斷對否。這樣由直觀到抽象,做符合學(xué)生的認(rèn)知規(guī)律,學(xué)生學(xué)得輕松,積極性很高、效果也很理想。
特別是在探討“等式”和“方程”的區(qū)別與聯(lián)系時,學(xué)生的思維被激活,課堂活動的氣氛達(dá)到了高潮。那就是學(xué)生舉得例子很形象,恰如其分,超出了我的意料。他們把“等式”比做一個雞蛋(蛋清和蛋黃),“方程”就是雞蛋中的蛋黃。他們解釋說:“蛋黃一定是雞蛋,也就是方程一定是等式,雞蛋不全是蛋黃也就是說等式不一定是方程”。孩子們的潛力真是不可低估、他們語出驚人,令我震驚,我及時就給他們高度的評價,孩子們創(chuàng)新之花是多么的美麗、燦爛。我要保存這火花的余溫,讓它再次綻放在我的課堂上。
《方程的意義》的教學(xué)反思 篇8
《方程的意義》是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué),理論性、學(xué)術(shù)性較強(qiáng),往往會顯得枯燥無味,但同時它又是一種基礎(chǔ)教學(xué),是以后學(xué)習(xí)更深一層知識,解決更多實際問題的知識支撐,因此我們應(yīng)該重視概念教學(xué)的開放性,自主性與概念形成的自然性。而且數(shù)學(xué)課程標(biāo)準(zhǔn)指出:數(shù)學(xué)教學(xué),要緊密聯(lián)系學(xué)生的生活環(huán)境,從學(xué)生的經(jīng)驗和已有知識出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生通過觀察、操作、歸納、類比、猜測、交流、反思等活動,獲得基本的數(shù)學(xué)知識和技能,進(jìn)一步發(fā)展思維能力,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心!斗匠痰囊饬x》這節(jié)課與學(xué)生的生活有密切聯(lián)系,通過本節(jié)課的學(xué)習(xí),要使學(xué)生經(jīng)歷從實際問題中總結(jié)概括出數(shù)學(xué)概念的過程。讓學(xué)生初步了解方程的意義,理解方程的概念,感受方程思想。使學(xué)生經(jīng)歷從生活情境到方程概念的建立過程,培養(yǎng)學(xué)生觀察、猜想、驗證、分類、抽象、概括、應(yīng)用等能力。通過自主探究,合作交流等數(shù)學(xué)活動,激發(fā)學(xué)生的興趣,所以我在教學(xué)設(shè)計的過程中十分重視學(xué)生原有的知識基礎(chǔ),用直觀手法向抽象過渡,用遞進(jìn)形式層層推進(jìn),讓學(xué)生經(jīng)歷一個知識形成的過程,并盡可能讓他們用語言表達(dá)描述出自己對學(xué)習(xí)過程中的理解,最后形成新的知識脈絡(luò)。下面就結(jié)合這節(jié)課,談?wù)勎以诮虒W(xué)中的做法和看法。
一、復(fù)習(xí)導(dǎo)入,激趣揭題
該環(huán)節(jié)主要復(fù)習(xí)與新知識有間接聯(lián)系的舊知識,為學(xué)習(xí)新知識鋪墊搭橋,以舊引新,方程是表達(dá)實際問題數(shù)量關(guān)系的一種數(shù)學(xué)模型,是在學(xué)生熟悉了常見的數(shù)量關(guān)系,能夠用字母表示數(shù)的基礎(chǔ)上教學(xué)的,因此開課伊始我結(jié)合與學(xué)生有關(guān)的一些生活現(xiàn)象出示了一組題,要求學(xué)生用含有字母的式子表示出來。這些題的出現(xiàn)即能讓學(xué)生復(fù)習(xí)鞏固以前所學(xué)的知識也能讓學(xué)生體會到我們生活中有很多現(xiàn)象都能用式子表示出來,激起學(xué)生的學(xué)習(xí)興趣,引出這節(jié)課的學(xué)習(xí)內(nèi)容,這樣的開課很實際,很干脆,也很有用。
二、實踐操作,建立方程模型
1. 用天平創(chuàng)設(shè)情境直觀形象,有助學(xué)生理解式子的意思
等式是一個數(shù)學(xué)概念。如果離開現(xiàn)實背景出現(xiàn)都是已知數(shù)組成的等式,雖然可以通過計算體會相等,但枯躁乏味,學(xué)生不會感興趣。如果離開現(xiàn)實情境出現(xiàn)含有未知數(shù)的等式,學(xué)生很難體會等式的具體含義。天平是計量物體質(zhì)量的工具,但它也可以通過平衡或者不平衡判斷出兩個物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。
2、自主操作,提高能力,激發(fā)興趣
在探究方程的.意義時我特意給學(xué)生提供操作天平平衡的不同材料,讓學(xué)生分組實踐,通過操作、觀察天平的狀態(tài)得到許多不同的式子,由于材料不同,每個組所得的式子也不同,有的全是已知數(shù)的式子,有的是含有未知數(shù)的式子,多種多樣的式子激起學(xué)生的探究欲望激發(fā)學(xué)生觀察興趣。
3、 對方程的認(rèn)識從表面趨向本質(zhì)
。1)在分類比較中認(rèn)識方程的主要特征。在教學(xué)過程中,學(xué)生通過觀察和操作得到了很多不同的式子,然后讓學(xué)生把寫出的式子進(jìn)行分類。先讓學(xué)生獨(dú)立思考,再在組內(nèi)交流,討論思考發(fā)現(xiàn)式子的不同,分類概括。有人可能先分成等式和不是等式兩類,再把等式分成不含未知數(shù)和含有未知數(shù)兩種情況;有人可能先分成不含未知數(shù)和含有未知數(shù)兩類,再把含有未知數(shù)的式子分成等式和不是等式兩種情況。盡管分的過程不完全一致,但最后都分出了含有未知數(shù)的等式,經(jīng)過探索和交流,認(rèn)識方程的特征,歸納出方程的意義。
。 2)要體會方程是一種數(shù)學(xué)模型!昂形粗獢(shù)的等式”描述了方程的外部特征,并不是本質(zhì)特征。方程用等式表示數(shù)量關(guān)系,它由已知數(shù)和未知數(shù)共同組成,表達(dá)的相等關(guān)系是現(xiàn)象、事件中最主要的數(shù)量關(guān)系。要讓學(xué)生體會方程的本質(zhì)特征。在教學(xué)過程中,通過觀察天平的相等關(guān)系(如左盤中是100克的杯子和x克水右盤中是250克砝碼,天平平衡,解釋方程的具體含義),感受方程與日常生活的聯(lián)系,體會方程用數(shù)學(xué)符號抽象地表達(dá)了等量關(guān)系,對方程的認(rèn)識從表面趨向本質(zhì)。
4.在“看”“說”和“寫”中體會式子
當(dāng)方程的意義建立后,我讓學(xué)生觀察一組式子判斷它們是不是方程,通過判斷說明這些式子為什么是“方程”,為什么“不是方程”,體會方程與等式的關(guān)系,加深對方程意義的理解。再讓學(xué)生自己寫出一些方程,展示自己寫的方法。
三、實際運(yùn)用,升華提高
在練習(xí)設(shè)計中由易到難,由淺入深,使學(xué)生的思維不斷發(fā)展,使學(xué)生對于方程意義的理解更為深刻,特別使讓學(xué)生自由創(chuàng)作方程這一練習(xí)題,既讓學(xué)生應(yīng)用了知識又培養(yǎng)了學(xué)生的創(chuàng)新思維。
本課時教學(xué)設(shè)計,改變了傳統(tǒng)學(xué)習(xí)方式,利用課本的靜態(tài)資源通過現(xiàn)代化教學(xué)手段,把數(shù)學(xué)情景動態(tài)化,大大激發(fā)了學(xué)生的學(xué)習(xí)興趣,充分體現(xiàn)了以學(xué)生為主,讓學(xué)生獨(dú)立思考,不斷歸納,把學(xué)生從被動地接受知識轉(zhuǎn)為自己探究,為學(xué)生提供了自主探究,合作交流的空間。在學(xué)習(xí)中體會到了學(xué)習(xí)數(shù)學(xué)的樂趣,在獲取知識的同時,情感態(tài)度,能力等方面都得到發(fā)展。當(dāng)然這節(jié)課還存在一些問題,比如對等式與方程的關(guān)系突出得不夠,讀學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機(jī)會,加強(qiáng)學(xué)生對方程的興趣,促進(jìn)學(xué)生把生活和數(shù)學(xué)有機(jī)結(jié)合。
《方程的意義》的教學(xué)反思 篇9
在教學(xué)設(shè)計時,我把“方程的意義”作為教學(xué)的重點(diǎn),方程意義的教學(xué)目標(biāo)定位是,不僅僅是讓學(xué)生了解方程的概念,能指出哪些是方程;更多思考的`是學(xué)生對方程后繼的學(xué)習(xí)和發(fā)展,注重知識的滲透.
課堂上讓學(xué)生借助于天平平衡與不平衡的現(xiàn)象列出表示等與不等關(guān)系的式子,為進(jìn)一步認(rèn)識等式、不等式提供了觀察的感性材料,然后引導(dǎo)學(xué)生對式子分類,建立等式概念,并舉出新的生活實例進(jìn)行強(qiáng)化.最后引導(dǎo)學(xué)生分析、判斷,明確方程與等式的聯(lián)系與區(qū)別,深化方程的概念.
本節(jié)課從課堂整體來看還可以,有大部分學(xué)生的思維還較清晰、會說;可還有部分學(xué)生不敢說,或者是不知如何表述,或者是表述的不準(zhǔn)確,我想問題的關(guān)鍵是學(xué)生的課堂思維過程的訓(xùn)練有待加強(qiáng),數(shù)學(xué)課堂也應(yīng)該重視學(xué)生“說”的訓(xùn)練,在說的過程中激活學(xué)生的思維,讓學(xué)生在新課程的指引下學(xué)會自主探索,學(xué)得主動,學(xué)得投入。
《方程的意義》的教學(xué)反思 篇10
《方程的意義》是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué),往往會顯得枯燥無味,但同時它又是一種基礎(chǔ)教學(xué),是以后學(xué)習(xí)更深一層知識,解決更多實際問題的知識支撐,因此我們應(yīng)該重視概念教學(xué)的開放性,自主性與概念形成的自然性。
一、生活引入,注重體驗。
數(shù)學(xué)課程標(biāo)準(zhǔn)指出:數(shù)學(xué)教學(xué),要緊密聯(lián)系學(xué)生的生活環(huán)境,從學(xué)生的經(jīng)驗和已有知識出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生通過觀察、操作、歸納、類比、猜測、交流、反思等活動,獲得基本的數(shù)學(xué)知識和技能,進(jìn)一步發(fā)展思維能力,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的.信心。
《方程的意義》這節(jié)課與學(xué)生的生活有密切聯(lián)系,因此在課始,采用學(xué)生生活中常見的蹺蹺板游戲,讓學(xué)生感受到類似于天平的“相等”和“不等”。這樣在結(jié)合天平感受這種關(guān)系以及最終體會到方程中“相等”的關(guān)系時,學(xué)生就會感受水到渠成。
二、自主學(xué)習(xí),辨析完善。
因為五年級學(xué)生已經(jīng)進(jìn)入了高年級,是有一定的學(xué)習(xí)能力的。所以,認(rèn)識方程中,我選擇了放手讓學(xué)生進(jìn)行自學(xué)。并給出了一定的自學(xué)提綱:(1)是方程,我的例子還有。(2)不是方程(可以舉例)。(3)我還知道。這里學(xué)生自學(xué)時是帶著自己例子進(jìn)行思辨性的自學(xué),所以感覺學(xué)生理解的還是比較的透徹的,在交流哪些不是方程時,學(xué)生理解了等式、不等式、方程之間的關(guān)系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。
三、結(jié)合實際、理解關(guān)系。
根據(jù)數(shù)量之間的關(guān)系列出方程也是本節(jié)課的重點(diǎn)之一。同時,這點(diǎn)也是后續(xù)列方程解決實際問題的一個基礎(chǔ)。所以在出示實際問題列出方程時,我總是追問:你是怎么想的?讓學(xué)生感受到搞清數(shù)量之間的關(guān)系是正確列出方程的前提條件。
另外,在練習(xí)的設(shè)計上,增加一些思維的難度和挑戰(zhàn)也是鍛煉學(xué)生數(shù)學(xué)思維的一個常態(tài)化的工作。
當(dāng)然這節(jié)課還存在一些問題,比如對等式的突出得不夠,學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機(jī)會。
《方程的意義》的教學(xué)反思 篇11
《方程的意義》這一課的教學(xué)。難點(diǎn)是區(qū)分“等式”和“方程”,建立方程的數(shù)模模型在腦中。
事先我曾經(jīng)試教用天平來為學(xué)生建立等式模型,效果比較好,后進(jìn)生也能理解方程的意義,但是會出現(xiàn)使用方程的過程中,經(jīng)常會產(chǎn)生誤差,學(xué)生就經(jīng)常誤解方程是不相等的。
為了解決這一誤解我就嘗試著用蹺蹺板做游戲來讓他們感受同等的等量關(guān)系,用文字來陳述第三種情境,讓他們感受到大于、小于、等于關(guān)系。學(xué)生的興趣此時如我所料確實比較高,可是我忽視了后進(jìn)生,用這三種情境太過于抽象,讓基礎(chǔ)薄弱的學(xué)生不一定能立馬反應(yīng)過來。經(jīng)過萬主任的點(diǎn)撥,我好好的思考后我覺得應(yīng)該給他們把天平和蹺蹺板同時呈現(xiàn),用形象的圖片呈現(xiàn)三種情境,他們的數(shù)模才會更容易建立。
第二環(huán)節(jié)的鞏固新知識時候,我讓學(xué)生小組討論被墨汁擋住的式子是否是方程時候,我回頭想想我有點(diǎn)操之過急,我應(yīng)該讓他們先從基礎(chǔ)的辨析后再來做這題,然后滲透集合思想讓他們區(qū)分方程,這樣這題的回答可能會更加的出彩。
第三個知識深入時候,看圖列式我也應(yīng)該更加明確告知學(xué)生式子的要求。也就是因為前面的起點(diǎn)太高,所以一些后進(jìn)生把題意理解錯誤,使答題不夠準(zhǔn)確。
總之,本節(jié)課從學(xué)生認(rèn)知規(guī)律和知識結(jié)構(gòu)的實際出發(fā),讓他們通過有目的的交流、討論,主動構(gòu)建自己的.認(rèn)知結(jié)構(gòu),調(diào)動了學(xué)生的學(xué)習(xí)熱情,加深對方程意義的認(rèn)識,激發(fā)了學(xué)生的探究欲望,培養(yǎng)了學(xué)生的學(xué)習(xí)興趣。在今后的教學(xué)中:我應(yīng)該注意后進(jìn)生,盡量多多從基礎(chǔ)出發(fā),注意幫助學(xué)生建立數(shù)學(xué)模型,更要把數(shù)學(xué)思想時刻灌輸?shù)恼n堂中。
《方程的意義》的教學(xué)反思 篇12
教學(xué)《方程的意義》,我反復(fù)研讀了這節(jié)課的內(nèi)容,并與舊教材的進(jìn)行了對比,思考著新教材為什么這樣設(shè)計?
舊教材先利用天平認(rèn)識等式,然后認(rèn)識方程。而新教材通過情境,先讓學(xué)生提出問題,學(xué)生在解決問題的過程中,學(xué)到用含有字母的式子表示數(shù)量之間的關(guān)系,在此基礎(chǔ)上,利用天平理解等式的意義,最后揭示方程的意義。
在設(shè)計這節(jié)課時,我把方程的意義作為教學(xué)重點(diǎn),不僅讓學(xué)生了解方程的概念,還要會判斷哪些是方程。更多思考的是學(xué)生對方程的后繼學(xué)習(xí)與思考,注重知識的滲透。如后面學(xué)習(xí)的等式的性質(zhì)、用方程解應(yīng)用題等等。
課堂上我讓學(xué)生根據(jù)創(chuàng)設(shè)的情境,提出數(shù)學(xué)問題,學(xué)生幾乎提不出表示兩者之間關(guān)系的問題,都是些求未知數(shù)的問題。這時教師就直接出示要求的問題,然后讓學(xué)生先找等量關(guān)系式,我發(fā)現(xiàn)只有極少數(shù)孩子能找到等量關(guān)系。由于找等量關(guān)系式教材中第一次出現(xiàn),學(xué)生不知道從哪入手。學(xué)生思考討論了一段時間,我發(fā)現(xiàn)也沒有結(jié)果,我就引導(dǎo)著學(xué)生進(jìn)行分析信息,找到了等量關(guān)系。找到了等量關(guān)系式,再列含有字母的式子就簡單多了。課下我分析,主要是我在備課時,高估了學(xué)生,如何引導(dǎo)還需要多研究。這也是我下一步訓(xùn)練的重點(diǎn)。
為了讓學(xué)生弄清楚方程與等式的關(guān)系,我通過天平的演示,讓學(xué)生理解等式的意義,學(xué)生很容易根據(jù)天平列出算式。然后教師指出,我們剛才列出的這些式子都叫等式,在這些等式中,你們又發(fā)現(xiàn)了什么?學(xué)生很容易得出兩種等式:一是不含未知數(shù)的等式,一種是含有未知數(shù)的`等式,在此基礎(chǔ)上,讓學(xué)生比較得出方程的概念,然后通過練習(xí)判斷哪是方程,那些不是方程?最后,讓學(xué)生用畫圖的形式表示出等式與方程的關(guān)系,教材中沒有出現(xiàn)這個內(nèi)容,但我補(bǔ)充進(jìn)去了,我覺得這樣有助于學(xué)生加深對方程意義的理解。本節(jié)課從課堂整體來看,大部分學(xué)生思維比較清晰,會表述,但也有部分學(xué)生表述不清,發(fā)言不夠積極?磥,課堂教學(xué)還要激活學(xué)生的思維,調(diào)動起學(xué)生的積極性,作為教師,還要多想些辦法。
“自主合作探究”一直是我們所倡導(dǎo)的學(xué)習(xí)方式,但如何有效地實施?我認(rèn)為,“自主學(xué)習(xí)”必須在教師的科學(xué)指導(dǎo)下,通過創(chuàng)造性的學(xué)習(xí),才能實現(xiàn)自主發(fā)展!昂献魈骄俊北仨氃趯W(xué)生獨(dú)立思考的基礎(chǔ)上進(jìn)行,否則,學(xué)生則沒有自己的主見,交流則會流于形式,沒有深度。有了學(xué)生的獨(dú)立思考,當(dāng)學(xué)生展示交流時,不同的思路與方法就會發(fā)生碰撞,教師要尊重學(xué)生探求的結(jié)果,引導(dǎo)學(xué)生對自己的結(jié)果與方法進(jìn)行反思與改進(jìn),促使全體參與,加生對知識形成過程的理解,培養(yǎng)梳理概括知識的的能力。
在整個教學(xué)過程中,教師作為主導(dǎo)者,要啟發(fā)誘導(dǎo)學(xué)生發(fā)現(xiàn)知識,充分發(fā)揮學(xué)生的潛能,逐步的引導(dǎo)學(xué)生對問題的思考和解決向縱深發(fā)展,有利于培養(yǎng)學(xué)生的傾聽習(xí)慣和合作意識。
《方程的意義》的教學(xué)反思 篇13
這一次學(xué)校開展了活動,在活動中我們集體備課選定了《方程的意義》一課作為研討課。這課的難點(diǎn)是區(qū)分“等式”和“方程”,為能突破這一難點(diǎn)我們精心設(shè)計了這節(jié)課的教學(xué)過程。
新課前先是出示了口算卡:
接著在方程意義教學(xué)過程中為了使學(xué)生能明白什么是相等關(guān)系,我們先用了一把1米長粗細(xì)均勻的直尺橫放在手指上,通過這一簡單的小游戲使學(xué)生明白什么是平衡和不平衡,平衡的情況是當(dāng)左右兩邊的重量相等時(食指位天直尺中央),緊接著引入了天平的演示,在天平的左右兩邊分邊放置20+30的兩只正方體、50的'砝碼,并根據(jù)平衡關(guān)系列出了一個等式,20+30=50;接著把其中一個30只轉(zhuǎn)換了一個方向,但是30的標(biāo)記是一個“?”天平仍是平衡狀態(tài)。得出另一個等式20+?=50,標(biāo)有?的再轉(zhuǎn)換一個方向后上面標(biāo)的是x,天平仍保持平衡狀態(tài),由此又可以寫出一個等式20+x=50。整個過程注重引導(dǎo)學(xué)生通過演示、觀察、思考、比較、概括等一系列活動,由淺入深,分層推進(jìn),逐步得出“等式”——“含有未知數(shù)的等式”——“方程”。
雖然整個教學(xué)任務(wù)好象是完成了。但從學(xué)生的練習(xí)中我們發(fā)現(xiàn)還有一部分學(xué)生對“等式”和“方程”的關(guān)系還是沒有真正弄清,例好在練習(xí)題中有一道討論題:“方程都是等式,而等式不一定是方程。”這句話對嗎?(答案是對的) 但是通過小組同學(xué)的合作學(xué)習(xí)和爭論,答案不一。雖然做錯的同學(xué)最后被做對的同學(xué)說服了,但這也說明了“等式”和“方程”的教學(xué)過程中還存在問題。其實我們是忽視了“等式”和“方程”的直接對比
我們的口算題引入本來是為這節(jié)課的學(xué)習(xí)進(jìn)行鋪墊,但在第一次上課時,口算題我們做完后沒有再回過頭來再充分利用。課后經(jīng)過大家的評課和科培中心老帥的指點(diǎn),看起來是很簡單的幾道口算題,其中隱藏著等式和方程的關(guān)系。第二節(jié)課中我們通過改進(jìn),在講完“等式”和“方程”后又回到口算卡,將口算卡的題通過變化——只是等式| ,——既是等式又是方程,這樣進(jìn)行對比使學(xué)生對 “等式”和“方程”的關(guān)系就弄得明明白白了。
《方程的意義》的教學(xué)反思 篇14
作為開學(xué)第一課,課本就將方程這樣一種重要的數(shù)學(xué)思想方法凸顯出來,可見方程的地位之大,的確,方程對豐富學(xué)生解決問題的策略,提高解決問題的能力,發(fā)展數(shù)學(xué)素養(yǎng)有著非常重要的意義。方程是一種特殊的等式,而等式的原型便是天平,可惜沒找到實物,但不妨礙學(xué)生通過已有經(jīng)驗來自我構(gòu)建。
首先出示5個式子,讓學(xué)生根據(jù)自己的標(biāo)準(zhǔn)分成兩類:等式與不等式,用“=”連接的便是等式,用其他如“﹥﹤≠≈”等不等號連接的式子是不等式。然后指出不等式需要到初中學(xué)習(xí),今天我們研究等式。觀察這幾個等式,可以分為幾類?指出,已經(jīng)知道的數(shù)叫已知數(shù),不知道的叫未知數(shù),等式里有未知數(shù),便是方程,方程包括在等式里,是一種特殊的等式。這樣,算是新課內(nèi)容結(jié)束了。接著根據(jù)關(guān)系式列方程。
從認(rèn)知規(guī)律來看,本節(jié)課的設(shè)計完全符合標(biāo)準(zhǔn),正本反饋,還是有些問題的'。
一、學(xué)生生活經(jīng)驗不足,導(dǎo)致找不準(zhǔn)數(shù)量關(guān)系。
媽媽買一臺電話機(jī),單價116元,付出x元,找回84元。學(xué)生的答案讓你意象不到,什么形式都有,他們會將這三個數(shù)通過一定的符號隨意地組合起來,讓我哭笑不得。在此之前有一個文具盒與筆記本共20元的問題,還引導(dǎo)學(xué)生編成了應(yīng)用題加以理解,不想還是有問題。所以學(xué)校應(yīng)該斥資建立一個超市,讓學(xué)生在真實的生活情境中找到發(fā)展的可能,有些數(shù)學(xué)問題真的只是生活,根本就不是數(shù)學(xué)。
二、加強(qiáng)備課力度,任何小的問題都不能存在。
還是上面一道題,根據(jù)以往列算式的經(jīng)驗,很多學(xué)生列成116+84=x,這是可以理解的,正因為我只是在課堂上強(qiáng)調(diào):根據(jù)經(jīng)驗,未知數(shù)不單獨(dú)放一邊,這樣跟算式的區(qū)別不大,但效果不很好。我想,將三種式子都板書出來,116+84=x,x-116=84,x-84=116,然后指出我們列方程習(xí)慣上不采用第一種,因為將x去掉,不影響答案,而選擇二、三兩種中的一種,
《方程的意義》的教學(xué)反思 篇15
《方程的意義》這是一塊嶄新的知識點(diǎn),對于五年級的學(xué)生來說,理解起來也有一定的難度。這是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué),理論性、學(xué)術(shù)性較強(qiáng),往往會顯得枯燥無味,但同時它又是一種基礎(chǔ)教學(xué),是以后學(xué)習(xí)更深一層知識,解決更多實際問題的知識支撐。因此,在教學(xué)中我通過創(chuàng)設(shè)貼近學(xué)生生活的情境來激發(fā)學(xué)生的學(xué)習(xí)興趣,從而使他們愿學(xué)、樂學(xué),為以后進(jìn)一步學(xué)習(xí)方程打下基礎(chǔ)。
在教學(xué)設(shè)計時,我把“方程的意義”作為教學(xué)的重點(diǎn),方程意義的教學(xué)目標(biāo)定位是,不僅僅是讓學(xué)生了解方程的概念,能指出哪些是方程;更多思考的是學(xué)生對方程后繼的學(xué)習(xí)和發(fā)展,注重知識的滲透.課堂上讓學(xué)生借助于天平平衡與不平衡的現(xiàn)象列出表示等與不等關(guān)系的式子,為進(jìn)一步認(rèn)識等式、不等式提供了觀察的感性材料,然后引導(dǎo)學(xué)生對式子分類,建立等式概念,并舉出新的生活實例進(jìn)行強(qiáng)化.最后引導(dǎo)學(xué)生分析、判斷,明確方程與等式的聯(lián)系與區(qū)別,深化方程的概念.
本節(jié)課從課堂整體來看還可以,有大部分學(xué)生的思維還較清晰、會說;可還有部分學(xué)生不敢說,或者是不知如何表述,或者是表述的'不準(zhǔn)確,我想問題的關(guān)鍵是學(xué)生的課堂思維過程的訓(xùn)練有待加強(qiáng),數(shù)學(xué)課堂也應(yīng)該重視學(xué)生“說”的訓(xùn)練,在說的過程中激活學(xué)生的思維,讓學(xué)生在新課程的指引下學(xué)會自主探索,學(xué)得主動,學(xué)得投入。
《方程的意義》的教學(xué)反思 篇16
方程的意義這部分內(nèi)容是學(xué)生初步接觸了一點(diǎn)代數(shù)知識之后進(jìn)行教學(xué)的,重點(diǎn)是“方程的意義”。設(shè)計的意圖是想通過觀察天平“平衡現(xiàn)象→不平衡到平衡→不確定現(xiàn)象”三個直觀活動,抽象出相關(guān)的數(shù)學(xué)式子,再通過觀察這些數(shù)學(xué)式子的.特征,抽象出方程的概念,即由“式子→等式→方程”的抽象過程,然后通過必要的練習(xí)鞏固加深對方程概念的理解和應(yīng)用。因此本課設(shè)計了活動探索、自主分類、抽象概括、靈活運(yùn)用4個環(huán)節(jié),讓學(xué)生通過觀察、分析、抽象、概括,建立起方程的概念,明確方程與等式的關(guān)系。
根據(jù)兒童思維發(fā)展的遞進(jìn)性,設(shè)計了三個層次的活動,一是通過學(xué)生觀察,抽象出相應(yīng)的數(shù)學(xué)式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通過自主探索,合作交流的學(xué)習(xí)方式,使不同能力的學(xué)生都得到有效發(fā)展;三是引導(dǎo)學(xué)生對“等式”觀察,將等式分為“含有未知數(shù)”和“不含未知數(shù)”兩類,然后抽象出方程的概念。最后通過判斷與獨(dú)立創(chuàng)作方程兩個學(xué)生活動,進(jìn)一步理解了方程的意義,明確方程與等式的關(guān)系。教學(xué)實施中的不足之處:教師在教學(xué)中用語不夠準(zhǔn)確精練,對學(xué)生的數(shù)學(xué)語言表達(dá)能力指導(dǎo)欠缺,對學(xué)生的發(fā)言教師傾聽程度不夠,未能很好把握課堂教學(xué)中生成的課堂教學(xué)資源。
《方程的意義》的教學(xué)反思 篇17
本節(jié)課從兩個學(xué)生比較熟悉的實際問題入手,通過對所列方程的觀察,并與一元一次方程類比,自然導(dǎo)出一元二次方程的意義及其相關(guān)的一些概念,既滲透了類比的數(shù)學(xué)思想,又加強(qiáng)了新舊知識間的聯(lián)系,有助于學(xué)生對新知識的理解與接受,降低了知識點(diǎn)的難度,減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)。
計過程中,不過于強(qiáng)調(diào)形式化的定義,也不要求學(xué)生死記硬背,只要能辨認(rèn)一些概念即可,最后出示的一個實際問題,目的`讓學(xué)生進(jìn)一步體會一元二次方程學(xué)習(xí)的重要性及實際價值,同時也為下一節(jié)一元二次方程的解法及應(yīng)用的學(xué)習(xí)設(shè)置懸念、埋下伏筆,激發(fā)學(xué)生的求知欲望,培養(yǎng)學(xué)生自主探究的習(xí)慣與能力。
本節(jié)課教學(xué),注重知識與實際的聯(lián)系,讓學(xué)生認(rèn)識到學(xué)習(xí)數(shù)學(xué)的重要性,注重學(xué)生的個性發(fā)展,采取自主探究與合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷思考、討論、合作、交流的過程,使學(xué)生始終處于學(xué)習(xí)的主體地位,培養(yǎng)學(xué)生與人交流、與人合作的能力。從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,進(jìn)而使學(xué)生獲得數(shù)學(xué)理解的同時,在思維能力、情感、態(tài)度與價值觀等多方面得到發(fā)展.
分層作業(yè)中必做題鞏固本節(jié)課的基本要求,體現(xiàn)了“人人都能獲得必要的數(shù)學(xué)”;選做題密切聯(lián)系生活,體現(xiàn)“人人學(xué)有價值的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展”,創(chuàng)設(shè)了具有實踐性、開放性的問題情境,啟發(fā)學(xué)生思考現(xiàn)實生活中可能蘊(yùn)涵某些數(shù)學(xué)知識的現(xiàn)象,初步學(xué)會“用數(shù)學(xué)”的意識。通過訓(xùn)練,在日常生活中,學(xué)生就會用數(shù)學(xué)的眼光觀察、探究現(xiàn)實世界,發(fā)現(xiàn)問題,通過自己的思考解決問題。
《方程的意義》的教學(xué)反思 篇18
《認(rèn)識方程》是北師大四年級下冊第七單元《認(rèn)識方程》的第三課時。這一內(nèi)容是學(xué)生第一次接觸方程,對于四年級的學(xué)生來說有一定的難度。 因為方程的意義是一節(jié)數(shù)學(xué)概念課,概念教學(xué)是一種理論教學(xué)往往會顯得枯燥無味,但是方程與學(xué)生的生活又有密切的聯(lián)系,因此在本課教學(xué)中始終注重學(xué)生興趣的培養(yǎng),讓學(xué)生感受方程與生活的密切聯(lián)系。從課前談話開始,我利用兩三分鐘與班上學(xué)生聊上幾句,輕松導(dǎo)入課題,消除彼此之間的緊張心情。在探究方程概念時,我放手讓學(xué)生自學(xué)課本,以天平圖,月餅圖、水壺圖整節(jié)課的主線,讓學(xué)生觀察情境圖,讓學(xué)生從這些具體的情境中獲取信息,去尋找隱含的相等關(guān)系并用自己的語言加以表述,然后嘗試用含有字母的'等式—— 方程表示各個相等關(guān)系。
讓學(xué)生親身體驗方程產(chǎn)生的需求,方程在運(yùn)用中的優(yōu)越性并成功建立數(shù)學(xué)模型,最后總結(jié)出方程的意義。得出概念后,進(jìn)入練一練環(huán)節(jié),我設(shè)計了兩個練習(xí):一是判斷是不是方程的練習(xí),通過學(xué)生自己合理判斷認(rèn)識到方程的兩個特征缺一不可,弄清等式與方程的區(qū)別與聯(lián)系,加深學(xué)生對方程外部特征的印象,進(jìn)一步體會方程的意義,加深了對方程概念的理解:二是設(shè)計了根據(jù)情境圖寫出相應(yīng)的方程,借助媒體呈現(xiàn)一些線段圖,組織學(xué)生根據(jù)這些圖中的等量關(guān)系列出方程。
這些題可以培養(yǎng)學(xué)生在現(xiàn)實情境里尋找等量關(guān)系的能力,也為以后運(yùn)用方程知識解決實際問題打下基礎(chǔ)。查一查的練習(xí)是是從人類最普遍的日常生活中的衣、食、住、行這四大方面入手,把課本后的練習(xí)題套上適當(dāng)?shù)那榫,激發(fā)學(xué)生學(xué)習(xí)的積極性,使得學(xué)生感受到數(shù)學(xué)就在自己的身邊。
最后拓展題,讓學(xué)生根據(jù)所給信息提出問題,列出方程,在較復(fù)雜的問題情境中,讓學(xué)生體會算術(shù)方法解決起來比較復(fù)雜的問題,可以比較容易地通過方程表示其中的數(shù)量關(guān)系,體會方程思想的魅力。經(jīng)歷方程建模的全過程,真正讓學(xué)生理解方程的含義,體驗方程思想,引領(lǐng)學(xué)生走方程世界。
《方程的意義》的教學(xué)反思 篇19
課堂從表演天平開始,姬亞航表演的天平讓學(xué)生哄堂大笑。馬明俊的天平表演的兢兢業(yè)業(yè),認(rèn)認(rèn)真真。六個式子,在輕松中從他們的身上寫到了黑板上,接下來就是這節(jié)課的關(guān)鍵地方了。問:如果讓你把這幾個式子進(jìn)行分類,你會怎么分?孩子們在默默的寫著自己的思考,我在教室里巡回的看著他們的精彩。有按是否有字母分成兩類的,有按照是否是等式的分成兩類的,有這兩類都寫,但徘徊的,(在他們心中,可能只是有一種分類是正確的)還有些別出心裁的把自己分類后的式子用長方形或圓形圈起來的,這不就是韋恩圖的.雛形嗎?在五個學(xué)生展示完自己的分類作品之后,我明確了按照是否是等式的分類方法,對另外一種分類也進(jìn)行了肯定。再問:如果讓你把這幾個等式再分類的話,你會怎么分?這里已經(jīng)不需要在思考了,按照是否有字母的標(biāo)準(zhǔn)就水到渠成了,什么是方程也就自然的在學(xué)生心目中有了答案:含有字母(未知數(shù))的等式。像學(xué)生的這些想法我能在課前預(yù)設(shè)嗎?答案是否定的,我只能根據(jù)課堂的進(jìn)程隨時調(diào)控,而在一節(jié)10分鐘的微課上,我是講不出這些東西的。課堂最后一個環(huán)節(jié),在以前就見過方程和從題目中找天平中繼續(xù)著,特別是從題目中找天平,我覺得是非常好的一種方式,題目中的天平,不就是我們一直所說的等量關(guān)系嗎?而找等量關(guān)系又是許多孩子的難點(diǎn),在方程的第一節(jié)課就給他們這樣的印象,用比找等量關(guān)系更可愛的找天平讓他們?nèi)ニ伎,對于他們以后用方程解題無疑開了一個好頭。如果說之前的認(rèn)識方程是在輕松中認(rèn)識的話,那么找題目中的天平則是在愉快中升華。方程是一種模型,建模的思想不就是找天平的一個過程嗎?遺憾的一點(diǎn)是沒有在這個環(huán)節(jié)層層遞進(jìn),這也是自己課前準(zhǔn)備不充分的體現(xiàn),因為找天平的靈感也是在課堂上萌發(fā)的。
反思一點(diǎn):
課本上的情景寫式子環(huán)節(jié),6到7個式子已經(jīng)足夠了,多了浪費(fèi)時間,并且會剝奪學(xué)生認(rèn)識方程這個主線。再次體會了教材的安排是有道理的。
反思二點(diǎn):
如果非要給這節(jié)課打分,我自己打85分,更客觀。不過,多少分都無所謂,76分也沒有對自己造成太大的影響,不過就是耿耿于懷一段時間。100分也不能說明什么問題,明知這樣的數(shù)據(jù)有水份,雖然有些學(xué)生也寫了原因:您講課幽默,我們愿意聽。上好自己的課才是關(guān)鍵,讓學(xué)生在自己的課堂上得到最大的受益才是目的。
反思三點(diǎn):
一節(jié)課沒有講過是沒有發(fā)言權(quán)的,講過了自己的思路也不一定正確。每個老師都有自己的想法,要善于學(xué)習(xí)別人的優(yōu)點(diǎn)。但不能照搬別人的流程。關(guān)鍵要看執(zhí)教者的立足點(diǎn)是什么,是為了學(xué)生,還是為了聽眾,是踏踏實實,還是嘩眾取寵。這些標(biāo)準(zhǔn)才是判斷課的好壞的標(biāo)準(zhǔn)。
《方程的意義》的教學(xué)反思 篇20
在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用加減乘除各部分之間的關(guān)系來求出方程中的未知數(shù),而今的人教版教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法,而是借用天平使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣就能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。在這節(jié)課的教學(xué)中,我從以下幾個方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
1、在學(xué)習(xí)中,我以天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺比較抽象,我引導(dǎo)學(xué)生在反復(fù)操作中理解加、減一個數(shù)的目的和依據(jù)。
我在天平的左側(cè)放5克砝碼,右側(cè)也放5克砝碼。(拋磚引玉)
2、學(xué)生親自動手反復(fù)不斷的進(jìn)行操作。(學(xué)生動手操作)
在此基礎(chǔ)上,我再做進(jìn)一步的引導(dǎo)。
活動是獲取真知的有效途徑,通過以上的活動,學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。
3、教師:請同學(xué)們都想一想,如果天平兩側(cè)都減去相同的質(zhì)量,天平會出現(xiàn)什么現(xiàn)象?你能列出幾個這樣的方程嗎?(學(xué)生同桌之間通過充分地交流,反饋交流結(jié)果,學(xué)生得知,如果我們把天平作為一個等式(當(dāng)天平平衡時)的話,等式的兩邊都減去同一個數(shù),等式仍然成立。通過引導(dǎo),學(xué)生能完全得出了等式的性質(zhì)。最后我們通過學(xué)生自己的整理和總結(jié),把以上發(fā)現(xiàn)的性質(zhì)合二為一。得出:等式的兩邊都加上(或減去)同一個數(shù),等式仍然成立。
二、利用等式性質(zhì)解方程——初步感悟它的妙用
在課堂上學(xué)生對用等式的性質(zhì)來解方程感到很陌生,在他們原有的經(jīng)驗中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。
在整節(jié)課的'教學(xué)中,其實學(xué)生是非常主動的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。
告訴學(xué)生利用等式的性質(zhì)來解方程熟練以后特別快。同時強(qiáng)調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡單的方程,但我認(rèn)為利用等式性質(zhì)解方程的方法單一化,內(nèi)容雖少問題很多。其表現(xiàn)在:
1、從教材的編排上,整體難度下降,有意避開了形如:66—2方程=30等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)方程在后面的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強(qiáng)調(diào)學(xué)生不會列出方程在后面的方程嗎?我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答方程在后面這類方程的解答方法,就是等號二邊同時加上方程,再左右換位置,再二邊減一個數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可實際上反而是多了。教師要給他們補(bǔ)充方程在后面的方程的解法。要教他們列方程時怎么避免方程在后面這樣方程的出現(xiàn)等等。因此,我干脆就又把原來的老方法交給同學(xué)們,以便備用或請他們根據(jù)具體情況選擇適當(dāng)?shù)慕忸}方法。
3、我個人認(rèn)為:現(xiàn)行教材的某些地方還有待于進(jìn)一步的改進(jìn)與完善。
《方程的意義》的教學(xué)反思 篇21
一、引入了天平,理解等式的性質(zhì)。
新教材的突出之處從直觀的天平入手,天平的兩邊同時加上或減去相同的重量,仍然保持平衡,這樣就引入了等式的性質(zhì)1,利用這個性質(zhì),可以解決a+x=b,或a-x=b的方程,接著又從天平的兩邊同時乘或除以相同的非零的數(shù),天平仍然平衡,可以解決ax=b或x÷a=b的方程。從長遠(yuǎn)角度看,學(xué)生經(jīng)過這樣的學(xué)習(xí),對于七年級以后的后續(xù)學(xué)習(xí)減少了障礙,很好地做好了銜接。
二、兩條腳走路,解決不便的問題。
教材中有意避免了形如-x或÷x的方程的出現(xiàn),可是在實際中,出現(xiàn)這種方程是不可避免的,如果出現(xiàn)了,我們教者如何解釋呢?學(xué)生又應(yīng)如何解答呢?當(dāng)然還可以根據(jù)等式的性質(zhì)來進(jìn)行左右兩邊的'化解,使得左邊或右邊變?yōu)樾稳鐇的情況,學(xué)生對于其中的減數(shù)與除數(shù)為未知數(shù)還可以啟發(fā)他運(yùn)用四則運(yùn)算的內(nèi)部的關(guān)系來解決。不要怕給了學(xué)生又一種選擇的機(jī)會,這樣在用等式的性質(zhì)解決問題不方便時,未嘗不是一種好的方法。
三、抓住其本質(zhì),簡化方程的過程。
兩邊同時加上或減去同一個數(shù)的過程,其本質(zhì)是為什么要這么做,當(dāng)學(xué)生經(jīng)過思考發(fā)現(xiàn)這樣的過程就是把方程的一邊變?yōu)橹皇O挛粗獢?shù)的過程,因而可以簡化一些不必要的多余過程,典型的如x+5=20,x+5-5=20+5,讓學(xué)生通過計算體驗這樣的第二步過程實際即為x=20+5,因而可以使方程的解答變得簡便。學(xué)生覺得當(dāng)然還是簡便的過程值得效仿,積極性顯得非常之高。
四、確保正確率,及時進(jìn)行檢驗。
原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學(xué)生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細(xì)的檢驗過程之后,然后教給學(xué)生一個簡便的檢驗方法,學(xué)生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。
同時,在這部分的教學(xué)期間,也有一些問題引發(fā)了個人的一些思考。
首先是學(xué)習(xí)中如何提高學(xué)生的學(xué)習(xí)規(guī)范性,方程的解答是一種規(guī)范的過程,它有一些固定的格式,例如必須寫“解:”,必須“=”上下對齊,要正確必須進(jìn)行檢驗等,而這些都必須讓學(xué)生多進(jìn)行訓(xùn)練,多強(qiáng)化練習(xí),理解各種題型的結(jié)構(gòu)。
其次是對于特殊方程的解答,如減數(shù)與除數(shù)為未知數(shù)的方程,用兩種方法解決的問題,可能會引起部分的的不理解,會不會與教材主倡導(dǎo)的用等式的性質(zhì)解決問題有矛盾呢
《方程的意義》的教學(xué)反思 篇22
解方程是是數(shù)學(xué)知識里面很關(guān)鍵很重要的一個知識點(diǎn)。,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。
在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運(yùn)用書本的“等式性質(zhì)”解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運(yùn)算之間的關(guān)系”解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項”解題,學(xué)生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的'依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。
因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會解簡單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會解各種題型的方程。在我看來,這樣的教學(xué)書本的知識不丟,方法又可以多種變通。所以我在教學(xué)解方程的時候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項”,在這里的時候,我給初中的“移項”起了一個新的名字:移——變號。引入了這一個方法,學(xué)生解方程的興致有了很大的提高,解方程也變得容易了許多。
但是在移-變號這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的特殊情況,而我則讓他們記住,只要x在后面,就要運(yùn)用到四則運(yùn)算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過練習(xí),學(xué)生解方程正確率有了很大的提高,但是與之而來的是,學(xué)生忘了等式的興致,忘了移—變號是怎么來的,而我,則在移-變號的基礎(chǔ)上,再一次的回顧,讓他們明白移-變號的立腳點(diǎn)就是等式的性質(zhì),如此反復(fù),學(xué)生加強(qiáng)了對解方程的認(rèn)識,也更牢固的記住了等式的興致。而通過這一次的上課,我意識到,老師在上課之前,一定要更好的預(yù)設(shè),只有在這樣的情況下,生成的結(jié)果,才不會顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識點(diǎn),只有這樣,才能夠給學(xué)生清晰的思路。
《方程的意義》的教學(xué)反思 篇23
本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個概念;會運(yùn)用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn),因此我進(jìn)行了大膽的嘗試,在講解方程的解時,新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的.關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學(xué)中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴(kuò)大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。
你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強(qiáng)調(diào)了一遍,我們的目標(biāo)是求一個x的多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。另外我還要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。
在做練習(xí)時我發(fā)現(xiàn)大部分的學(xué)生在解方程的時候,還是運(yùn)用了加、減法各部分間的關(guān)系來求出方程中的未知數(shù),只有個別學(xué)生懂得運(yùn)用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學(xué)生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
【《方程的意義》的教學(xué)反思】相關(guān)文章:
方程的意義的教學(xué)反思12-30
方程意義教學(xué)反思02-01
方程的意義教學(xué)反思09-01
方程的意義教學(xué)反思09-26
《方程的意義》的教學(xué)反思12-23
《方程的意義》教學(xué)反思12-29
熱門方程的意義教學(xué)反思02-21
薦方程的意義教學(xué)反思04-10
方程意義教學(xué)反思15篇02-22
方程的意義教學(xué)反思錦集11-24