圓柱的體積教學(xué)反思
作為一名優(yōu)秀的人民教師,我們的工作之一就是課堂教學(xué),通過教學(xué)反思能很快的發(fā)現(xiàn)自己的講課缺點,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編為大家收集的圓柱的體積教學(xué)反思,歡迎閱讀與收藏。
圓柱的體積教學(xué)反思1
本節(jié)課主要是引導(dǎo)學(xué)生探索并掌握圓柱的體積公式,主要重視了以下幾方面:
1、重視先猜想、再驗證的思路來引入教學(xué)。
新課伊始,課件出示三個幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進(jìn)一步引導(dǎo)思考:想一想,長方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?學(xué)生認(rèn)同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗證呢?今天這節(jié)課就來研究這個問題。
2、重視利用知識、方法的遷移來展開教學(xué)。
本課的例題探索,有一個目標(biāo)就是使學(xué)生在活動中進(jìn)一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的`能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時,根據(jù)陳星月的回答順勢復(fù)習(xí)了圓面積的推導(dǎo):把一個圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長方形,圓的面積就可以轉(zhuǎn)化成長方形的面積進(jìn)行計算。接著提問:那么,受這個啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長方體來計算體積呢?首先實物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個近似的長方體。然后進(jìn)行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會越來越接近長方體。這樣有利于激活學(xué)生已有的知識和經(jīng)驗,使學(xué)生充分體會圓柱體積公式推導(dǎo)過程的合理性,并不斷豐富對圖形轉(zhuǎn)化方法的感受。
3、重視通過核心問題的討論和板書的精當(dāng)設(shè)計來突出重點、突破難點。
核心問題即指中心問題,是諸多問題中相對最具思維價值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗和方法,針對具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的計算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的長方體與原來的圓柱有什么關(guān)系?”“要計算圓柱的體積一般要知道哪些條件?”這三個問題,使學(xué)生在獲取圓柱體積公式的同時又了解了體積公式的由來,并及時總結(jié)了思考問題的方法。核心問題也可以指為了探究知識的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。
當(dāng)然,需要注意和改進(jìn)的地方是:書寫格式的規(guī)范。
圓柱的體積教學(xué)反思2
圓柱的體積計算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:
。1)圓柱的體積等于長方體和正方體的體積。
。2)圓柱的體積也等于底面積乘高。猜測是否準(zhǔn)確呢?
點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的`體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。首先我對這種方法加以肯定,然后利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
圓柱的體積教學(xué)反思3
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。
我讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時候,圓柱和圓錐又會有什么樣的關(guān)系?這樣,就有一種水到渠成的.感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點,一是在教學(xué)新課時,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對練習(xí)較少,但在考試?yán)锩鎸嶋H解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時練習(xí)。教學(xué)中的一組填空題,對于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學(xué)的重點和難點,也是考試中學(xué)生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!
圓柱的體積教學(xué)反思4
一、讓操作更詳實,留下思考的痕跡
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實踐操作中探究發(fā)現(xiàn)規(guī)律,可以充分調(diào)動學(xué)生的各種感官,從感性到理性,從實踐到認(rèn)識,從具體到抽象,引導(dǎo)學(xué)生積極動手動腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識的理解和掌握。尤其是對于幾何知識的學(xué)習(xí),課堂教學(xué)中的動手操作就顯得更加重要。
在探索圓柱體積計算方法的時候,教師試圖讓學(xué)生結(jié)合圓面積計算的探索方法,能聯(lián)想到可以把,圓柱的體積轉(zhuǎn)化成已知的立體圖形的體積。但這種方法似乎在學(xué)生的印象中并不深刻,因此學(xué)生在探索的一開始,學(xué)生就遇到了思考的困惑,對他后面的探索造成了很大的影響。在教師的印象中圓面積的計算公式推導(dǎo)應(yīng)該是我們花了很多時間去讓學(xué)生操作的,但是操作的效果卻如此之差。我們不妨反問自己一下,究竟自己在教學(xué)的時候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會與認(rèn)識,在操作中是否激起了學(xué)生的思考。
當(dāng)學(xué)生想到了探索方法后,卻因為一些客觀的原因,沒有能夠讓學(xué)生親自去套作一番,光是看課件、看其他同學(xué)的操作,對于大部分學(xué)生來說,印象是不夠深刻的,體會也是不到位的。畢竟這部分內(nèi)容的學(xué)習(xí)對與學(xué)生來說也是有一定困難的,雖然是六年級的同學(xué),但他們的空間想象能力還是不夠的,需要實打?qū)嵉牟僮,讓他們有個直觀的認(rèn)識。
所以我認(rèn)為我們的課堂上應(yīng)放手讓學(xué)生去操作,用直觀的操作,留下自己思考的痕跡,為進(jìn)一步探索知識做好準(zhǔn)備。
二、讓觀察更細(xì)致,尋找知識的聯(lián)系
數(shù)學(xué)觀察力,是新課標(biāo)中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的基礎(chǔ)上要學(xué)會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。
在圓柱的體積的教學(xué)中,教師讓學(xué)生去發(fā)現(xiàn)圓柱體與通過切割后形成的.長方體之間的聯(lián)系時,不少學(xué)生都一時摸不著頭腦。這時,教師不妨給孩子一些觀察的提示,如:“拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?”“拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?”通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識的探索過程中有一個完成的體驗過程,也對所學(xué)的知識有一個更好的理解。
觀察是智慧的源泉,讓學(xué)生學(xué)會從變化的角度去觀察,發(fā)現(xiàn)知識之間的聯(lián)系,這也是一種令學(xué)生終身受益的學(xué)習(xí)方法。
三、讓探索更深入,渴求方法的掌握
通過操作與觀察,可以說學(xué)生積累了一定的認(rèn)知經(jīng)驗,這種經(jīng)驗我想不應(yīng)該只停留在一節(jié)課、一個內(nèi)容的學(xué)習(xí)中,可以延伸到很多知識的學(xué)習(xí)中去,從而形成一定的學(xué)習(xí)方法。就如在圓柱的體積的學(xué)習(xí)中,圓柱體轉(zhuǎn)化成已經(jīng)學(xué)過的長方體的體積來探究的這種方法在之前學(xué)生已經(jīng)接觸過,如:圓面積的計算方法、平行四邊形的面積計算方法,我們都是通過將未知的圖形轉(zhuǎn)化成已知圖形來探索面積計算的方法。如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實現(xiàn)知識的正遷移。
因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識經(jīng)驗的同時
圓柱的體積教學(xué)反思5
圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進(jìn)行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。
一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同愛們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動手操作,拼成了一個近似的長方體。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的`知識形成過程(想象、操作、演示)中,認(rèn)識得以升華(較抽象的認(rèn)識——公式)。
在探究的過程中,我不是安排了一整套指令讓學(xué)生進(jìn)行程序操作,獲得一點基本技能,而是提供了相關(guān)知識背景、實驗素材,使用“對我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎么想的?”等這樣一些指向探索的話語鼓勵學(xué)生獨立思考、動手操作、合作探究,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。教學(xué)中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運(yùn)用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學(xué)生觀察、比較近似長方體與圓柱的關(guān)系,使圓柱體體積的計算公式推導(dǎo)過程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習(xí)中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機(jī)和能力。
三、建立切拼表象,滲透極限思想
學(xué)生進(jìn)行數(shù)學(xué)探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機(jī)會給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生基本沒有親身參與操作,非常遺憾。
本節(jié)課我采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
圓柱的體積教學(xué)反思6
《圓柱的體積》以前教學(xué)此內(nèi)容時,由于沒有相應(yīng)的教具,往往直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=SH,讓學(xué)生套公式練習(xí);這學(xué)期我教本節(jié)課內(nèi)容時,課前作了充分準(zhǔn)備了教具,再加之網(wǎng)上收集整理出來相應(yīng)的教學(xué)課件,課堂教學(xué)我讓學(xué)生自己動手實踐、自主探索與合作交流,讓學(xué)生實踐中體驗,從而獲得知識?傊寣W(xué)生的手、腦、嘴、眼各種器官充分利用起來,讓學(xué)生不僅學(xué)到知識,而且讓學(xué)生體驗學(xué)習(xí)的過程,真正理解圓柱體積的推導(dǎo)過程,讓學(xué)生真正成為學(xué)習(xí)的主人。對此,我有以下的感想
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是我告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。這樣學(xué)生不但嘗到了知識,更重要的是他們掌握了學(xué)習(xí)數(shù)學(xué)的方法,這樣有利于孩子將來的發(fā)展。
二、培養(yǎng)了學(xué)生的`科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。本節(jié)課我讓學(xué)生聯(lián)系圓的面積推導(dǎo)的基礎(chǔ)上,讓學(xué)生自主探究圓柱的體積的推導(dǎo)過程。充分體現(xiàn)了這一理念。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展
【圓柱的體積教學(xué)反思】相關(guān)文章:
《圓柱的體積》教學(xué)反思10-30
《圓柱體積》教學(xué)反思04-20
圓柱體積的教學(xué)反思12-02
《圓柱的體積》教案01-27
圓柱的體積教案11-18
《圓柱的體積》教案(精選14篇)03-30