《有理數(shù)的乘法》教案
作為一名教學(xué)工作者,通常需要用到教案來輔助教學(xué),教案是教學(xué)藍圖,可以有效提高教學(xué)效率。怎樣寫教案才更能起到其作用呢?下面是小編為大家收集的《有理數(shù)的乘法》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
《有理數(shù)的乘法》教案1
教學(xué)目標
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3。三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4。通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5。本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
。ㄒ唬┲攸c、難點分析
重點:
是否能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
難點:
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。
。ǘ┲R結(jié)構(gòu)
(三)教法建議
1。有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2。兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”。絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
3;A(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4。幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5。小學(xué)學(xué)過的`乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。
6。如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
教學(xué)設(shè)計示例
有理數(shù)的乘法(第一課時)
教學(xué)目標
1。使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2。通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;
3。通過教材給出的行程問題,認識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法法則的理解。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認知結(jié)構(gòu)提出問題
1。計算(—2)+(—2)+(—2)。
2。有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))
3。有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)[
4。根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(—2)=?(—3)×(—2)=?(學(xué)生答)
把3×(—2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來的積“—6”的相反數(shù)“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習的乘法,有理數(shù)中特別注意“負負得正”和“異號得負”。
用有理數(shù)乘法法則與小學(xué)學(xué)習的乘法相比,由于介入了負數(shù),使乘法較小學(xué)當然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了。
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值。
三、運用舉例,變式練習
例某一物體溫度每小時上升a度,現(xiàn)在溫度是0度。
。1)t小時后溫度是多少?
。2)當a,t分別是下列各數(shù)時的結(jié)果:
①a=3,t=2;②a=—3,t=2;
、赼=3,t=—2;④a=—3,t=—2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際。
課堂練習
1?诖穑
。1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
。4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
。7)(—6)×0;(8)0×(—6);
2。口答:
。1)1×(—5);(2)(—1)×(—5);(3)+(—5);
。4)—(—5);(5)1×a;(6)(—1)×a。
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時教師強調(diào)指出,a可以是正數(shù),也可以是負數(shù)或0;—a未必是負數(shù),也可以是正數(shù)或0。
3。填空:
。1)1×(—6)=______;(2)1+(—6)=_______;
。3)(—1)×6=________;(4)(—1)+6=______;
(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
。9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判斷下列方程的解是正數(shù)還是負數(shù)或0:
。1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小結(jié)
今天主要學(xué)習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”。
五、作業(yè)
1。計算:
。1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
。4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”號連接):
。1)如果a<0,b<0,那么ab________0;
。2)如果a<0,b<0,那么ab_______0;
(3)如果a>0時,那么a____________2a;
。4)如果a<0時,那么a__________2a。
探究活動
問題:桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案:“±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下。道理很簡單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成—1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1)。而7個杯口全部朝下時,7個數(shù)的乘積等于—1,這是不可能的。
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言。
《有理數(shù)的乘法》教案2
三維目標
一、知識與技能
(1)能確定多個因數(shù)相乘時,積的符號,并能用法則進行多個因數(shù)的乘積運算。
(2)能利用計算器進行有理數(shù)的乘法運算。
二、過程與方法
經(jīng)歷探索幾個不為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力。
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生主動探索,積極思考的學(xué)習興趣。
教學(xué)重、難點與關(guān)鍵
1.重點:能用法則進行多個因數(shù)的乘積運算。
2.難點:積的符號的確定。
3.關(guān)鍵:讓學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律。
教具準備
投影儀。
四、 教學(xué)過程
1.請敘述有理數(shù)的乘法法則。
2.計算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授
1.多個有理數(shù)相乘,可以把它們按順序依次相乘。
例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我們知道計算有理數(shù)的乘法,關(guān)鍵是確定積的符號。
觀察:下列各式的積是正的還是負的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式積為負,(2)、(4)式積為正,積的符號與負因數(shù)的個數(shù)有關(guān)。
教師問:幾個不是0的數(shù)相乘,積的符號與負因數(shù)的個數(shù)之間有什么關(guān)系?
學(xué)生完成思考后,教師指出:幾個不是0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當負因數(shù)的'個數(shù)為負數(shù)時,積為負數(shù);當負因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)。
2.多個不是0的有理數(shù)相乘,先由負因數(shù)的個數(shù)確定積的符號再求各個絕對值的積。
《有理數(shù)的乘法》教案3
一、學(xué)情分析:
1、學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習過非負有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學(xué)習了數(shù)軸、相反數(shù)、絕對值的有關(guān)概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學(xué)會了由運算解決簡單的實際問題,具備了學(xué)習有理數(shù)乘法的知識技能基礎(chǔ)。
2、學(xué)生的活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習過程中,學(xué)生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學(xué)活動經(jīng)驗,同時在以前的學(xué)習中,學(xué)生曾經(jīng)歷了合作學(xué)習和探索學(xué)習的過程,具有了合作和探索的意識。
二、 教材分析:
教科書基于學(xué)生已掌握了有理數(shù)加法、減法運算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進行有理數(shù)的運算。
本節(jié)課的數(shù)學(xué)目標是:
1、經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;
。病W(xué)會進行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:
三、教學(xué)過程設(shè)計:
本節(jié)課設(shè)計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運用鞏固,練習提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):問題情境,引入新課
問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
。ǎ玻┤绻谜柋硎舅簧仙,用負號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。
設(shè)計意圖:培養(yǎng)學(xué)生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學(xué)知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式
。ǎ场粒矗剑保,那么下列一組算式的結(jié)果應(yīng)該如何計算?請同學(xué)們思考:
(-3)×3=_____;
(-3)×2=_____;
。ǎ常粒保剑撸撸撸撸;
(-3)×0=_____。
(2)當同學(xué)們寫出結(jié)果并說明道理時,讓學(xué)生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
。ǎ常粒ǎ保剑撸撸撸撸;
。ǎ常粒ǎ玻剑撸撸撸撸撸
。ǎ常粒ǎ常剑撸撸撸撸;
。ǎ常粒ǎ矗剑撸撸撸撸摺
教前設(shè)計意圖:以算式求解和探究問題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負數(shù)與非負數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負數(shù)與負數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項:(1)本環(huán)節(jié)的設(shè)計理念是學(xué)生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結(jié)論。但在實際過程中,學(xué)生對結(jié)論的表述有困難,或者表達不準確,不全面,對于這些問題,不能求全責備,而應(yīng)循循善誘,順勢引導(dǎo),幫助學(xué)生盡可能簡練準確的表述,也不要擔心時間不足而代替學(xué)生直接表述法則。
(2)展示兩組算式時,注意板書藝術(shù),把算式豎排,并對齊書寫,這樣易于學(xué)生觀察特點,發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗證明確結(jié)論
問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,絕對值相乘,任何數(shù)與零相乘,積仍為零。進行驗證活動,出示一組算式由學(xué)生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
。ā矗粒保剑撸撸撸撸撸
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前設(shè)計意圖:這個環(huán)節(jié)的設(shè)計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗證和證明它的'正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習和熟悉過程。
教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計這個環(huán)節(jié),確實讓學(xué)生體驗經(jīng)歷驗證過程。
。ǎ玻┍经h(huán)節(jié)的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。
。ǎ常┰谟贸朔ǚ▌t計算時,要注意其運算步驟與加法運算一樣,都是先確定結(jié)果的符號,再進行絕對值的運算。另外還應(yīng)注意:法則中的“同號得正,異號得負”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。
第四環(huán)節(jié):運用鞏固,練習提高
活動內(nèi)容:
。ǎ保。計算:
、牛ǎ矗粒; ⑵(5-)×(-7);
、牵ǎ3÷8)×(-8÷3);⑷(-3)×(-1÷3);
。ǎ玻。計算:
、牛ǎ矗粒怠粒ǎ。25); ⑵(-3÷5)×(-5÷6)×(-2);
3!白h一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?
。ǎ矗┯嬎悖
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
、5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計意圖:對有理數(shù)乘法法則的鞏固和運用,練習和提高.
教后反思事項:(1)學(xué)生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應(yīng)注明理由,運算熟練后,可不要求書寫每一步的理由;
(2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵學(xué)生通過對例2的運算結(jié)果觀察分析,用自己的語言表達所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時,教師可設(shè)置如下一組算式讓學(xué)生計算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個任務(wù)。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸。
通過對以上算式的計算和觀察,學(xué)生不難得出結(jié)論:多個數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當然這段語言,不需要讓學(xué)習背誦,只要理解會用即可。
第五環(huán)節(jié):感悟反思課堂
問題
1.本節(jié)課大家學(xué)會了什么?
2.有理數(shù)乘法法則如何敘述?”
3.有理數(shù)乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設(shè)計意圖:培養(yǎng)學(xué)生的口頭表達能力,提高學(xué)生的參與意識。激勵學(xué)生展示自我。
教后反思事項:學(xué)生時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調(diào)準確記憶,而應(yīng)鼓勵學(xué)生大膽發(fā)言,同時教師可用準確的語言適時的加以點撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1
預(yù)習作業(yè);略
四、教學(xué)反思:
1、設(shè)計條理的問題串,使觀察、猜想、驗證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
。、合理使用多媒體教學(xué)手段可以彌補課堂時間的不足,但絕不能代替必要的板書。
《有理數(shù)的乘法》教案4
教學(xué)目標
1.知識與技能
、俳(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證的能力.
、跁M行有理數(shù)的乘法運算.
2.過程與方法
通過對問題的變式探索,培養(yǎng)觀察、分析、抽象的.能力.
3.情感、態(tài)度與價值觀
通過觀察、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動中的探索性和創(chuàng)造性.
教學(xué)重點難點
重點:能按有理數(shù)乘法法則進行有理數(shù)乘法運算.
難點:含有負因數(shù)的乘法.
教與學(xué)互動設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
做一做 出示一組算式,請同學(xué)們用計算器計算并找出它們的規(guī)律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想 你們發(fā)現(xiàn)積的符號與因數(shù)的符號之間的關(guān)系如何?
學(xué)生活動:計算、討論
總結(jié) 一正一負的兩個數(shù)的乘積為負;兩正或兩負的乘積是正數(shù).
兩數(shù)相乘,同號得正,異號得負.
想一想 兩數(shù)相乘,積的絕對值是怎么得到的呢?
學(xué)生:是兩因數(shù)的絕對值的積.
《有理數(shù)的乘法》教案5
一、教學(xué)目標
1.使學(xué)生在了解有理數(shù)乘法的意義的基礎(chǔ)上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;
2.培養(yǎng)學(xué)生觀察、歸納、概括及運算能力
3 使學(xué)生掌握多個有理數(shù)相乘的積的.符號法則;
二、教學(xué)重點和難點
重點:有理數(shù)乘法的運算.
難點:有理數(shù)乘法中的符號法則.
三.教學(xué)手段
現(xiàn)代課堂教學(xué)手段
四.教學(xué)方法
啟發(fā)式教學(xué)
五、教學(xué)過程
(一)、研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解①32=6
答:上升了6厘米.
問題2 水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3(-2)=?(-3)(-2)=?(學(xué)生答)
把3(-2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積6的相反數(shù)-6,即3(-2)=-6.
把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積-6的相反數(shù)6,即(-3)(-2)=6.
《有理數(shù)的乘法》教案6
目標:
1、知識與技能
使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)的乘法法則,能熟練地進行有理數(shù)的乘法運算。
2、過程與方法
經(jīng)歷探索有理數(shù)乘法法則的過程,理解有理數(shù)乘法法則,發(fā)展觀察、探究、合情推理等能力,會進行有理數(shù)和乘法運算。
重點、難點:
1、重點:有理數(shù)乘法法則。
2、難點:有理數(shù)乘法意義的理解,確定有理數(shù)乘法積的符號。
過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新
1、由前面的學(xué)習我們知道,正數(shù)的加減法可以擴充到有理數(shù)的加減法,那么乘法是可也可以擴充呢?
乘法是加法的特殊運算,例如5+5+5=5×3,那么請思考:
。ǎ5)+(-5)+(-5)與(-5)×3是否有相同的結(jié)果呢?本節(jié)我們就探究這個問題。
3、在一條由西向東的筆直的'馬路上,取一點O,以向東的路程為正,則向西的路程為負,如果小玫從點O出發(fā),以5千米的向西行走,那么經(jīng)過3小時,她走了多遠?
二、合作交流,解讀探究
1、小學(xué)學(xué)過的乘法的意義是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果兩個數(shù)的和為0,那么這兩個數(shù) 互為相反數(shù) 。
2、由前面的問題3,根據(jù)小學(xué)學(xué)過的乘法意義,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、學(xué)生活動:計算3×(-5)+3×5,注意運用簡便運算
通過計算表明3×(-5)與3×5互為相反數(shù),從而有
3×(-5)=-(3×5),由此看出,3×(-5)得負數(shù),并且把絕對值3與5相乘。
類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正數(shù),并且把絕對值5與3相乘。
4、提出:從以上的運算中,你能總結(jié)出有理數(shù)的乘法法則嗎?
鼓勵學(xué)生自己歸納,并用自己的語舞衫歌扇,并與同伴交流。
在學(xué)生猜測、歸納、交流的過程中及時引導(dǎo)、肯定
兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
任何數(shù)與0相乘,積仍為0
(板書)有理數(shù)乘法法則:
三、應(yīng)用遷移,鞏固提高
1、計算
。ǎ5)×(-4) 2×(-3.5) × (-0.75)×0
。1)學(xué)生根據(jù)乘法法則,在練習本上完成。指定四位同學(xué)到黑板演習。
。2)教師:要求學(xué)生明確算理,學(xué)生做練習時,教師巡視,及時引導(dǎo)。
2、計算下列各題
① (-4)×5×(-0.25) ② ×( )×(-2)
、 ×( )×0×( )
指定三名同學(xué)在黑板上做,使學(xué)生明確,做有理數(shù)的乘法時,要先確定積的符號,再求出積的絕對值。
教師提出問題:幾個有理數(shù)相乘時,因數(shù)都不為0時,積是多少?
學(xué)生小結(jié)后,教師歸納:
幾個不為0的有理數(shù)相乘,積的符號由負因數(shù)的符號決定,負因數(shù)有奇數(shù)個時,積為負;負因數(shù)有偶數(shù)個時,積為正;只要有一個因數(shù)為0,則積為0
練習:本P31練習
四、總結(jié)反思(學(xué)生先小結(jié))
1、有理數(shù)乘法法則
2、有理數(shù)乘法的一般步驟是:
。1)確定積的符號; (2)把絕對值相乘。
五、作業(yè):P39習題1.5 A組 1、2
《有理數(shù)的乘法》教案7
【編者按】教師在備課時,應(yīng)充分估計學(xué)生在學(xué)習時可能提出的問題,確定好重點,難點,疑點,和關(guān)鍵。根據(jù)學(xué)生的實際改變原先的教學(xué)計劃和方法,滿腔熱忱地啟發(fā)學(xué)生的思維,針對疑點積極引導(dǎo)。
一、 學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。
二、 課前準備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學(xué)習、組間競爭學(xué)習,形成良好的學(xué)習氣氛。
三、 教學(xué)目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
五、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、 小組探索、歸納法則
教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做 P76 練習1(1)(3),教師評析。
(4)教師引導(dǎo)學(xué)生做P75 例2,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當負因數(shù)個數(shù)有 ,積為 ; 當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。
4、 討論對比,使學(xué)生知識系統(tǒng)化。
有理數(shù)乘法
有理數(shù)加法
同號
得正
取相同的符號
把絕對值相乘
(-2)(-3)=6
把絕對值相加
(-2)+(-3)=-5
異號
得負
取絕對值大的加數(shù)的符號
把絕對值相乘
(-2)3= -6
(-2)+3=1
用較大的絕對值減小的絕對值
任何數(shù)與零
得零
得任何數(shù)
5、 分層作業(yè),鞏固提高。
六、 教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進入角色,很快投入到探究有理數(shù)乘法法則上來,提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運用時,編制一些訓(xùn)練符號法則的口算題,把例2放在下一課時處理,效果可能更好。
【點評】:本節(jié)課張老師首先創(chuàng)設(shè)了一個密切社會生活的問題情景抗旱,由此引入新課,并利用學(xué)生熟悉的數(shù)軸去探究有理數(shù)的乘法法則,充分體現(xiàn)了課程源于生活,服務(wù)于生活,學(xué)生的學(xué)習是在原有知識上的自我建構(gòu)的過程等理念,教學(xué)要面向?qū)W生的生活世界和社會實踐,教學(xué)活動必須尊重學(xué)生已有的知識與經(jīng)驗,學(xué)生原有的知識和經(jīng)驗是學(xué)習的基礎(chǔ),學(xué)生的學(xué)習是在原有知識和經(jīng)驗基礎(chǔ)上的自我生成的過程。
探索有理數(shù)乘法法則是本節(jié)課的重點,同時它又是一個具有探索性又有挑戰(zhàn)性的問題,因此張老師在這一教學(xué)環(huán)節(jié)花了大量的時間,精心設(shè)計了問題訓(xùn)練單,將學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)的原則分學(xué)習小組開展學(xué)習合作學(xué)習,使學(xué)生經(jīng)歷了法則的探索過程,獲得了深層次的情感體驗,建構(gòu)知識,獲得了解決問題的方法,培養(yǎng)了學(xué)生的探索精神和創(chuàng)新能力。
為了讓學(xué)生將獲得的新知識納入到原有的認知結(jié)構(gòu)中去,便于記憶和提取,在教學(xué)的最后環(huán)節(jié),張老師組織學(xué)生對有理數(shù)的乘法和有理數(shù)的加法進行對比,通過討論、比較使知識系統(tǒng)化、條理化,從而使自己的認知結(jié)構(gòu)不斷地得以優(yōu)化。學(xué)生自己建構(gòu)知識,是建構(gòu)主義學(xué)習觀的基本觀點,當新知識獲得之后,必須按一定方式加以組織,為新知識找到家,并為新知識安家落戶。
學(xué)生是一個活生生的'人,是一個發(fā)展中的人,學(xué)生間的發(fā)展是極不平衡的,為了尊重學(xué)生的差異,以學(xué)生個體發(fā)展為本,張老師在教學(xué)中利用學(xué)生的個人性格不同,采用異質(zhì)分組,使不同性格的學(xué)生組對交流、互換角色,達到了性格互補的目的。采取分層作業(yè)的方式,讓不同的人在數(shù)學(xué)學(xué)習中得到了不同的發(fā)展,使每個人的認識都得到完善,這正是新課程發(fā)展的核心理念──為了每一位學(xué)生的發(fā)展的具體體現(xiàn)。
本節(jié)課我們也同時看到在新課引入和法則探究兩個教學(xué)環(huán)節(jié)中,張老師的設(shè)計與教材完全不同,充分體現(xiàn)了教師是用教材,而不是教教材,這也是新課程所倡導(dǎo)的教學(xué)理念。教師教教科書是傳統(tǒng)的教書匠的表現(xiàn),用教科書教才是現(xiàn)代教師應(yīng)有的姿態(tài)。我們教師應(yīng)從學(xué)生實際出發(fā),因材施教,創(chuàng)造性地使用教材,大膽對教材內(nèi)容進行取舍、深加工、再創(chuàng)造,設(shè)計出活生生的、豐富多彩的課來,充分有效地將教材的知識激活,形成有教師個性的教材知識。既要有能力把問題簡明地闡述清楚,同時也要有能力引導(dǎo)學(xué)生去探索、去自主學(xué)習。
《有理數(shù)的乘法》教案8
教學(xué)目標
1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2.能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5.本節(jié)課通過行程問題說明法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
本節(jié)的教學(xué)重點是能夠熟練進行運算。依據(jù)法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習除法運算和乘方運算的基礎(chǔ)。運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
本節(jié)的難點是對法則的理解。法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的.符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。
(二)知識結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.
5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。
6.如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
教學(xué)設(shè)計示例
(第一課時)
教學(xué)目標
1.使學(xué)生在了解意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2.通過運算,培養(yǎng)學(xué)生的運算能力;
3.通過教材給出的行程問題,認識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)法則,熟練進行運算;
難點:有理數(shù)乘法法則的理解.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有認知結(jié)構(gòu)提出問題
1.計算(-2)+(-2)+(-2).
2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習四則運算是在有理數(shù)的什么范圍中進行的?(非負數(shù))
3.有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)
4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)
把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
任何數(shù)同0相乘,都得0.
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習的乘法,有理數(shù)中中特別注意“負負得正”和“異號得負”.
用有理數(shù)乘法法則與小學(xué)學(xué)習的乘法相比,由于介入了負數(shù),使乘法較小學(xué)當然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了.
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值.
三、運用舉例,變式練習
例1 計算:
例2 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.
(1)t小時后溫度是多少?
(2)當a,t分別是下列各數(shù)時的結(jié)果:
、賏=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際.
課堂練習
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調(diào)指出,a可以是正數(shù),也可以是負數(shù)或0;-a未必是負數(shù),也可以是正數(shù)或0.
3.當a,b是下列各數(shù)值時,填寫空格中計算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判斷下列方程的解是正數(shù)還是負數(shù)或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結(jié)
今天主要學(xué)習了有理數(shù)乘法法則,大家要牢記,兩個負數(shù)相乘得正數(shù),簡單地說:“負負得正”.
五、作業(yè)
1.計算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.計算:
3.填空(用“>”或“<”號連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時,那么a ____________2a;
(4)如果a<0時,那么a __________2a.
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.
《有理數(shù)的乘法》教案9
教學(xué)目的:
(一)知識點目標:有理數(shù)的乘法運算律。
(二)能力訓(xùn)練目標:1.經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2.能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1.在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2.在討論的過程中,使學(xué)生感受集體的`力量,培養(yǎng)團隊意識。
教學(xué)重點:乘法運算律的運用。
教學(xué)難點:乘法運算律的運用。
教學(xué)方法:探究交流相結(jié)合。。
創(chuàng)設(shè)問題情境,引入新課
[活動1]
問題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學(xué)過的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運算律成立嗎?
問題2:計算下列各題:
(1)(一7)×8;
(2)8×(一7);
(5)[3×(一4)]×(一5);
(6)3×[(一4)×(一5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)
[師](一5)×(3一7)和(一5)×3一5×7的結(jié)果相等嗎?
(注意:(一5)×(3一7)中的3一7應(yīng)看作3與(一7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
應(yīng)得出:1.一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等.
2.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3.一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習的快樂。
3.用簡便方法計算:
[活動4]
練習(教科書第42頁)
課時小結(jié):
這節(jié)課我們學(xué)習乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
課后作業(yè):課本習題1.4的第7題(3)、(6)。
活動與探究:
用簡便方法計算:
(1)6.868×(一5)十6.868×(一12)十6.868×(十17)
(2)[(4×8)×25一8]×125
《有理數(shù)的乘法》教案10
一、學(xué)習目標:
1. 熟練掌握有理數(shù)的乘法法 則
2. 會運用乘法運算率簡化乘法運算.
3. 了解互為倒數(shù)的意義,并會求一個非零有理數(shù)的倒數(shù)
二、學(xué)習重點:探索有 理數(shù)乘法運算律
學(xué)習難點:運用乘法運算律簡化計算
三、學(xué)習過程:
(一)、情境引入:
1、復(fù)習有理數(shù)的乘法法則(兩個因數(shù)、兩個以上的因數(shù)),并舉例說明。
2、在含有負數(shù)的乘法運算中,乘法交換律,結(jié)合律和分配律還成立嗎?
觀察 下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、請再舉幾組數(shù)試一試,看上面所得的結(jié)論是否成立?
(二)、新課講解:
有理數(shù)乘法運算律
交換律 ab =ba
結(jié)合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.計算:
(1)8(- )(-0.125) (2)
(3)( )(-36) (4)
例2.計算
(1)8 (2)(4)( ) (3)( )( )
觀察例2中的三個運算, 兩個因數(shù)有什么 特點?它們的'乘積呢?你能夠得到什么結(jié)論?
(三)、鞏固練習:
1.運用運算律填空.
(1)-2-3=-3(_____).
(2)[-32](-4)=-3[(______)(______)].
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2.選擇題
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同號 D a,b異號
(2)利用分配律計算 時,正確的方案可以是 ( )
A B
C D
3.運用運算律計算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-18.36) (6)(- )0.125(-2 )
(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)
四、課堂小結(jié):
通過本節(jié)課你學(xué)到了哪些知識?你 達成學(xué)習目標了嗎?
五、作業(yè)布置:
課本第42頁習題2.5 第3題
數(shù)學(xué)評價手冊
六 、學(xué)后記/教后記
《有理數(shù)的乘法》教案11
教學(xué)目標
1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2.能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5.本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
本節(jié)的教學(xué)重點是能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的'乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負號的個數(shù)。當負號的個數(shù)為奇數(shù)時,積的符號為負號;當負號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
本節(jié)的難點是對有理數(shù)的乘法法則的理解。有理數(shù)的乘法法則中的“同號得正,異號得負”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負號。積的絕對值是這兩個因數(shù)的絕對值的積。
。ǘ┲R結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.
5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負有理數(shù)。
6.如果因數(shù)是帶分數(shù),一般要將它化為假分數(shù),以便于約分。
《有理數(shù)的乘法》教案12
教學(xué)目的:
1、要求學(xué)生會進行有理數(shù)的加法運算;
2、使學(xué)生更多經(jīng)歷有關(guān)知識發(fā)生、規(guī)律發(fā)現(xiàn)過程。
教學(xué)分析:
重點:對乘法運算法則的運用,對積的確定。
難點:如何在該知識中注重知識體系的延續(xù)。
教學(xué)過程:
一、知識導(dǎo)向:
有理數(shù)的乘法是小學(xué)所學(xué)乘法運算的延續(xù),也是在學(xué)習了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習的過程,多讓學(xué)生經(jīng)歷知識、規(guī)律發(fā)現(xiàn)的過程。在學(xué)習中應(yīng)掌握有理數(shù)的乘法法則。
二、新課:
1、知識基礎(chǔ):
其一:小學(xué)所學(xué)過的乘法運算方法;
其二:有關(guān)在加法運算中結(jié)果的確定方法與步驟。
2、知識形成:
(引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
情形1:小蟲向東爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個方向?相距出發(fā)地點多少米?
列式:
即:小蟲位于原來出發(fā)位置的東方6米處
拓展:如果規(guī)定向東為正,向西為負
情形2:小蟲向西爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個方向?相距出發(fā)地點多少米?
列式:
即:小蟲位于原來出發(fā)位置的西方6米處
發(fā)現(xiàn):當我們把中的一個因數(shù)3換成它的相反數(shù)-3時,所得的.積是原來的積6的相反數(shù)-6
同理,如果我們把中的一個因數(shù)2換成它的相反數(shù)-2時,所得的積是原來的積6的相反數(shù)-6
概括:把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)
3、設(shè)疑:
如果我們把中的一個因數(shù)2換成它的相
反數(shù)-2時,所得的積又會有什么變化?
當然,當其中的一個因數(shù)為0時,所得的積還是等于0。
綜合:有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;
任何數(shù)與零相乘,都得零。
例:計算:
(1)(2)
三、鞏固訓(xùn)練:
P52.1、2、3
四、知識小結(jié):
本節(jié)課從實際情形入手,對多種情形進行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運算法則。在運算中應(yīng)強調(diào)注意如何正確得到積的結(jié)果。
五、家庭作業(yè):
P57.1、2,3
六、每日預(yù)題:
1、小學(xué)多學(xué)過哪些乘法的運算律?
2、在對有理數(shù)的簡便運算中,一般應(yīng)考慮到哪些可能的情況?
《有理數(shù)的乘法》教案13
【教學(xué)目標】
1.熟練有理數(shù)乘法法則;
2.探索運用乘法運算律簡化運算.
【對話探索設(shè)計】
〖探索1
你知道乘法的交換律和結(jié)合律嗎?你會用字母表示它們嗎?在有理數(shù)范圍內(nèi),它們?nèi)匀怀闪?
〖閱讀理解
乘法交換律和結(jié)合律(見P40)
〖探索2
下列計算若按順序依次相乘怎樣算? 用運算律為什么能簡化運算?
(1)252004 (2) - 1999
〖探索3
運用運算律真的能節(jié)省時間嗎?分兩個大組,比一比:
計算(-198)
〖練習1
運用乘法交換律和結(jié)合律簡化運算:
(1)1999125 (2) -1097
〖探索4
1.每千克大米1.60元,第一天購進3590千克,第二天又購進6410千克,兩天一共要付多少錢?你知道這道題有哪兩種算法嗎?哪一種簡便?
2.如右圖,你會用兩種方法求長方形ABCD的面積嗎?
〖例題學(xué)習
P41.例5
〖作業(yè)
P41.練習
〖補充作業(yè)
1.計算(注意運用分配律簡化運算):
(1)-6(100-); (2)(-12).
(2)2(-3)4(-5)(-6)789(-10);
(3) 2(-3)4(-5)(-6)0789(-10);
4.下列各式的積(冪)是正的還是負的`?為什么?
(1)(-3)(-3)(-3)(-3)(-3).
5.運用乘法交換律和結(jié)合律簡化運算:
(1)-98(-0.6); (2)-1999(-)()
【補充練習】
1.某地氣象統(tǒng)計資料表明,高度每增加,氣溫就降低大約.現(xiàn)在地面氣溫是,則在的高空的氣溫是多少?
2.運用分配律化簡下列的式子:
(1)例3x+9x+x (2)13x-20x+5x;
=(3+9+1)x
=13x;
(3)12-9 (4)-z-7z-8z.
《有理數(shù)的乘法》教案14
一、 教學(xué)目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
(2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
(-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的`關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學(xué)生做練習,教師評析。
。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
《有理數(shù)的乘法》教案15
一、學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。
二、課前準備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學(xué)習、組間競爭學(xué)習,形成良好的學(xué)習氣氛。
三、教學(xué)目標
1、知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、情感與態(tài)度目標
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的.理解。
五、教學(xué)過程
1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、小組探索、歸納法則
(1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
a.2×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2×3=
b.-2×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2×3=
c.2×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2×(-3)=
d.(-2)×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
(-2)×(-3)=
e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。
(2)學(xué)生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
(+)×(+)=同號得
(-)×(+)=異號得
(+)×(-)=異號得
(-)×(-)=同號得
b.積的絕對值等于 。
c.任何數(shù)與零相乘,積仍為 。
(3)師生共同用文字敘述有理數(shù)乘法法則。
3、運用法則計算,鞏固法則。
(1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做P76練習1(1)(3),教師評析。
(4)教師引導(dǎo)學(xué)生做P75例2,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當負因數(shù)個數(shù)有 ,積為 ;當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。
4、討論對比,使學(xué)生知識系統(tǒng)化。
有理數(shù)乘法有理數(shù)加法
同號得正取相同的符號
把絕對值相乘
(-2)×(-3)=6把絕對值相加
(-2)+(-3)=-5
異號得負取絕對值大的加數(shù)的符號
把絕對值相乘
(-2)×3=-6(-2)+3=1
用較大的絕對值減小的絕對值
任何數(shù)與零得零得任何數(shù)
5、分層作業(yè),鞏固提高。
六、教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進入角色,很快投入到探究有理數(shù)乘法法則上來,提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運用時,編制一些訓(xùn)練符號法則的口算題,把例2放在下一課時處理,效果可能更好。
【《有理數(shù)的乘法》教案】相關(guān)文章:
有理數(shù)的乘法教案09-29
有理數(shù)的乘法教案15篇11-09
有理數(shù)的乘法教案(15篇)03-25
有理數(shù)的乘法數(shù)學(xué)教案12-12
有理數(shù)的乘法教學(xué)反思07-28
數(shù)學(xué)課《有理數(shù)的乘法》反思通用10-30
乘法的教案11-13
有理數(shù)的乘方教案11-10
有理數(shù)的除法教案01-23